Loading…
Illumination-Adaptive Person Re-Identification
Most person re-identification (ReID) approaches assume that person images are captured under relatively similar illumination conditions. In reality, long-term person retrieval is common, and person images are often captured under different illumination conditions at different times across a day. In...
Saved in:
Published in: | IEEE transactions on multimedia 2020-12, Vol.22 (12), p.3064-3074 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Most person re-identification (ReID) approaches assume that person images are captured under relatively similar illumination conditions. In reality, long-term person retrieval is common, and person images are often captured under different illumination conditions at different times across a day. In this situation, the performances of existing ReID models often degrade dramatically. This paper addresses the ReID problem with illumination variations and names it as Illumination-Adaptive Person Re-identification (IA-ReID) . We propose an Illumination-Identity Disentanglement (IID) network to dispel different scales of illuminations away while preserving individuals' identity information. To demonstrate the illumination issue and to evaluate our model, we construct two large-scale simulated datasets with a wide range of illumination variations. Experimental results on the simulated datasets and real-world images demonstrate the effectiveness of the proposed framework. |
---|---|
ISSN: | 1520-9210 1941-0077 |
DOI: | 10.1109/TMM.2020.2969782 |