Loading…
Energy Storage Management via Deep Q-Networks
Energy storage devices represent environmentally friendly candidates to cope with volatile renewable energy generation. Motivated by the increase in privately owned storage systems, this paper studies the problem of real-time control of a storage unit co-located with a renewable energy generator and...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Zamzam, Ahmed S. Yang, Bo Sidiropoulos, Nicholas D. |
description | Energy storage devices represent environmentally friendly candidates to cope with volatile renewable energy generation. Motivated by the increase in privately owned storage systems, this paper studies the problem of real-time control of a storage unit co-located with a renewable energy generator and an inelastic load. Unlike many approaches in the literature, no distributional assumptions are being made on the renewable energy generation or the real-time prices. Building on the deep Q-networks algorithm, a reinforcement learning approach utilizing a neural network is devised where the storage unit operational constraints are respected. The neural network approximates the action-value function which dictates what action (charging, discharging, etc.) to take. Simulations indicate that near-optimal performance can be attained with the proposed learning-based control policy for the storage units. |
doi_str_mv | 10.1109/PESGM40551.2019.8973808 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8973808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8973808</ieee_id><sourcerecordid>8973808</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-7863c82e2184264193c171d1b9d2a2b8bb51f4962a0808590c8c91f9d16978913</originalsourceid><addsrcrecordid>eNotj91OwkAQRlcTExF5Ai_sCyzuzG53Zy4NVjQBf4Jek207JVUppG0kvL1N5Nycu5PvU-oWzBTA8N1btpovnUlTmKIBnhIHS4bO1BUEJAAmwHM1AnZOM1t7qSZd92UGUhe8x5HSWSPt5pis-l0bN5IsYzNoK02f_NYxeRDZJ-_6RfrDrv3urtVFFX86mZw8Vp-P2cfsSS9e58-z-4Wu0dheB_K2IBQEcugdsC0gQAk5lxgxpzxPoXLsMZphbcqmoIKh4hI8B2KwY3Xz361FZL1v621sj-vTO_sHTz5B0g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Energy Storage Management via Deep Q-Networks</title><source>IEEE Xplore All Conference Series</source><creator>Zamzam, Ahmed S. ; Yang, Bo ; Sidiropoulos, Nicholas D.</creator><creatorcontrib>Zamzam, Ahmed S. ; Yang, Bo ; Sidiropoulos, Nicholas D.</creatorcontrib><description>Energy storage devices represent environmentally friendly candidates to cope with volatile renewable energy generation. Motivated by the increase in privately owned storage systems, this paper studies the problem of real-time control of a storage unit co-located with a renewable energy generator and an inelastic load. Unlike many approaches in the literature, no distributional assumptions are being made on the renewable energy generation or the real-time prices. Building on the deep Q-networks algorithm, a reinforcement learning approach utilizing a neural network is devised where the storage unit operational constraints are respected. The neural network approximates the action-value function which dictates what action (charging, discharging, etc.) to take. Simulations indicate that near-optimal performance can be attained with the proposed learning-based control policy for the storage units.</description><identifier>EISSN: 1944-9933</identifier><identifier>EISBN: 1728119812</identifier><identifier>EISBN: 9781728119816</identifier><identifier>DOI: 10.1109/PESGM40551.2019.8973808</identifier><language>eng</language><publisher>IEEE</publisher><subject>data-driven control ; deep neural networks ; energy management systems ; Energy storage ; reinforcement learning</subject><ispartof>2019 IEEE Power & Energy Society General Meeting (PESGM), 2019, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8973808$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8973808$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zamzam, Ahmed S.</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Sidiropoulos, Nicholas D.</creatorcontrib><title>Energy Storage Management via Deep Q-Networks</title><title>2019 IEEE Power & Energy Society General Meeting (PESGM)</title><addtitle>PESGM</addtitle><description>Energy storage devices represent environmentally friendly candidates to cope with volatile renewable energy generation. Motivated by the increase in privately owned storage systems, this paper studies the problem of real-time control of a storage unit co-located with a renewable energy generator and an inelastic load. Unlike many approaches in the literature, no distributional assumptions are being made on the renewable energy generation or the real-time prices. Building on the deep Q-networks algorithm, a reinforcement learning approach utilizing a neural network is devised where the storage unit operational constraints are respected. The neural network approximates the action-value function which dictates what action (charging, discharging, etc.) to take. Simulations indicate that near-optimal performance can be attained with the proposed learning-based control policy for the storage units.</description><subject>data-driven control</subject><subject>deep neural networks</subject><subject>energy management systems</subject><subject>Energy storage</subject><subject>reinforcement learning</subject><issn>1944-9933</issn><isbn>1728119812</isbn><isbn>9781728119816</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91OwkAQRlcTExF5Ai_sCyzuzG53Zy4NVjQBf4Jek207JVUppG0kvL1N5Nycu5PvU-oWzBTA8N1btpovnUlTmKIBnhIHS4bO1BUEJAAmwHM1AnZOM1t7qSZd92UGUhe8x5HSWSPt5pis-l0bN5IsYzNoK02f_NYxeRDZJ-_6RfrDrv3urtVFFX86mZw8Vp-P2cfsSS9e58-z-4Wu0dheB_K2IBQEcugdsC0gQAk5lxgxpzxPoXLsMZphbcqmoIKh4hI8B2KwY3Xz361FZL1v621sj-vTO_sHTz5B0g</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Zamzam, Ahmed S.</creator><creator>Yang, Bo</creator><creator>Sidiropoulos, Nicholas D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201908</creationdate><title>Energy Storage Management via Deep Q-Networks</title><author>Zamzam, Ahmed S. ; Yang, Bo ; Sidiropoulos, Nicholas D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-7863c82e2184264193c171d1b9d2a2b8bb51f4962a0808590c8c91f9d16978913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>data-driven control</topic><topic>deep neural networks</topic><topic>energy management systems</topic><topic>Energy storage</topic><topic>reinforcement learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Zamzam, Ahmed S.</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Sidiropoulos, Nicholas D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zamzam, Ahmed S.</au><au>Yang, Bo</au><au>Sidiropoulos, Nicholas D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Energy Storage Management via Deep Q-Networks</atitle><btitle>2019 IEEE Power & Energy Society General Meeting (PESGM)</btitle><stitle>PESGM</stitle><date>2019-08</date><risdate>2019</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>1944-9933</eissn><eisbn>1728119812</eisbn><eisbn>9781728119816</eisbn><abstract>Energy storage devices represent environmentally friendly candidates to cope with volatile renewable energy generation. Motivated by the increase in privately owned storage systems, this paper studies the problem of real-time control of a storage unit co-located with a renewable energy generator and an inelastic load. Unlike many approaches in the literature, no distributional assumptions are being made on the renewable energy generation or the real-time prices. Building on the deep Q-networks algorithm, a reinforcement learning approach utilizing a neural network is devised where the storage unit operational constraints are respected. The neural network approximates the action-value function which dictates what action (charging, discharging, etc.) to take. Simulations indicate that near-optimal performance can be attained with the proposed learning-based control policy for the storage units.</abstract><pub>IEEE</pub><doi>10.1109/PESGM40551.2019.8973808</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1944-9933 |
ispartof | 2019 IEEE Power & Energy Society General Meeting (PESGM), 2019, p.1-5 |
issn | 1944-9933 |
language | eng |
recordid | cdi_ieee_primary_8973808 |
source | IEEE Xplore All Conference Series |
subjects | data-driven control deep neural networks energy management systems Energy storage reinforcement learning |
title | Energy Storage Management via Deep Q-Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Energy%20Storage%20Management%20via%20Deep%20Q-Networks&rft.btitle=2019%20IEEE%20Power%20&%20Energy%20Society%20General%20Meeting%20(PESGM)&rft.au=Zamzam,%20Ahmed%20S.&rft.date=2019-08&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=1944-9933&rft_id=info:doi/10.1109/PESGM40551.2019.8973808&rft.eisbn=1728119812&rft.eisbn_list=9781728119816&rft_dat=%3Cieee_CHZPO%3E8973808%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-7863c82e2184264193c171d1b9d2a2b8bb51f4962a0808590c8c91f9d16978913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8973808&rfr_iscdi=true |