Loading…

A 3D Convolutional Neural Network for Light Field Depth Estimation

Depth estimation has always been a great challenge in the field of computer vision and machine learning. There is a rich literature focusing on depth estimation in stereo vision or in monocular imaging, while the domain of depth estimation in light field images is still in its infancy. The paper pro...

Full description

Saved in:
Bibliographic Details
Main Authors: Faluvegi, Agota, Bolsee, Quentin, Nedevschi, Sergiu, Dadarlat, Vasile-Teodor, Munteanu, Adrian
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c256t-d5fbdd28f2125a096c8342d4981979da895aad74fc5164f47db7a06098ff826f3
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Faluvegi, Agota
Bolsee, Quentin
Nedevschi, Sergiu
Dadarlat, Vasile-Teodor
Munteanu, Adrian
description Depth estimation has always been a great challenge in the field of computer vision and machine learning. There is a rich literature focusing on depth estimation in stereo vision or in monocular imaging, while the domain of depth estimation in light field images is still in its infancy. The paper proposes a fully convolutional 3D neural network that estimates the disparity in light field images. The proposed method is parametric as it is able to adapt to input images of arbitrary size and it is lightweight and less prone to overfitting thanks to its fully convolutional nature. The experiments reveal competitive results against the state of the art, demonstrating the potential offered by deep learning solutions for disparity estimation in light field images.
doi_str_mv 10.1109/IC3D48390.2019.8975996
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8975996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8975996</ieee_id><sourcerecordid>8975996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-d5fbdd28f2125a096c8342d4981979da895aad74fc5164f47db7a06098ff826f3</originalsourceid><addsrcrecordid>eNotj8tOwzAURA0SElXJFyAh_0CC3753WZIWKkV0U9aVG9s0EJoqcUH8PQW6OpuZMxpC7jgrOGd4vyxlpUAiKwTjWABajWguSIYWuBXANQcUl2QipMWcW2DXJBvHN8ZOcc3Aqgl5mFFZ0bLff_bdMbX93nX0ORyHP6SvfninsR9o3b7uEl20ofO0Coe0o_MxtR_ut3FDrqLrxpCdOSUvi_m6fMrr1eOynNV5I7RJuddx672AKLjQjqFpQCrhFQJHi94Baue8VbHR3KiorN9axwxDiBGEiXJKbv-9bQhhcxhO88P35vxa_gCaNEru</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A 3D Convolutional Neural Network for Light Field Depth Estimation</title><source>IEEE Xplore All Conference Series</source><creator>Faluvegi, Agota ; Bolsee, Quentin ; Nedevschi, Sergiu ; Dadarlat, Vasile-Teodor ; Munteanu, Adrian</creator><creatorcontrib>Faluvegi, Agota ; Bolsee, Quentin ; Nedevschi, Sergiu ; Dadarlat, Vasile-Teodor ; Munteanu, Adrian</creatorcontrib><description>Depth estimation has always been a great challenge in the field of computer vision and machine learning. There is a rich literature focusing on depth estimation in stereo vision or in monocular imaging, while the domain of depth estimation in light field images is still in its infancy. The paper proposes a fully convolutional 3D neural network that estimates the disparity in light field images. The proposed method is parametric as it is able to adapt to input images of arbitrary size and it is lightweight and less prone to overfitting thanks to its fully convolutional nature. The experiments reveal competitive results against the state of the art, demonstrating the potential offered by deep learning solutions for disparity estimation in light field images.</description><identifier>EISSN: 2379-1780</identifier><identifier>EISBN: 9781728151892</identifier><identifier>EISBN: 1728151899</identifier><identifier>DOI: 10.1109/IC3D48390.2019.8975996</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D convolution ; CNN ; Computer vision ; Convolution ; Deep learning ; depth estimation ; disparity map ; EPI ; Estimation ; Focusing ; Light field image ; Neural networks ; Three-dimensional displays</subject><ispartof>2019 International Conference on 3D Immersion (IC3D), 2019, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-d5fbdd28f2125a096c8342d4981979da895aad74fc5164f47db7a06098ff826f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8975996$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8975996$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Faluvegi, Agota</creatorcontrib><creatorcontrib>Bolsee, Quentin</creatorcontrib><creatorcontrib>Nedevschi, Sergiu</creatorcontrib><creatorcontrib>Dadarlat, Vasile-Teodor</creatorcontrib><creatorcontrib>Munteanu, Adrian</creatorcontrib><title>A 3D Convolutional Neural Network for Light Field Depth Estimation</title><title>2019 International Conference on 3D Immersion (IC3D)</title><addtitle>IC3D</addtitle><description>Depth estimation has always been a great challenge in the field of computer vision and machine learning. There is a rich literature focusing on depth estimation in stereo vision or in monocular imaging, while the domain of depth estimation in light field images is still in its infancy. The paper proposes a fully convolutional 3D neural network that estimates the disparity in light field images. The proposed method is parametric as it is able to adapt to input images of arbitrary size and it is lightweight and less prone to overfitting thanks to its fully convolutional nature. The experiments reveal competitive results against the state of the art, demonstrating the potential offered by deep learning solutions for disparity estimation in light field images.</description><subject>3D convolution</subject><subject>CNN</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>depth estimation</subject><subject>disparity map</subject><subject>EPI</subject><subject>Estimation</subject><subject>Focusing</subject><subject>Light field image</subject><subject>Neural networks</subject><subject>Three-dimensional displays</subject><issn>2379-1780</issn><isbn>9781728151892</isbn><isbn>1728151899</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOwzAURA0SElXJFyAh_0CC3753WZIWKkV0U9aVG9s0EJoqcUH8PQW6OpuZMxpC7jgrOGd4vyxlpUAiKwTjWABajWguSIYWuBXANQcUl2QipMWcW2DXJBvHN8ZOcc3Aqgl5mFFZ0bLff_bdMbX93nX0ORyHP6SvfninsR9o3b7uEl20ofO0Coe0o_MxtR_ut3FDrqLrxpCdOSUvi_m6fMrr1eOynNV5I7RJuddx672AKLjQjqFpQCrhFQJHi94Baue8VbHR3KiorN9axwxDiBGEiXJKbv-9bQhhcxhO88P35vxa_gCaNEru</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Faluvegi, Agota</creator><creator>Bolsee, Quentin</creator><creator>Nedevschi, Sergiu</creator><creator>Dadarlat, Vasile-Teodor</creator><creator>Munteanu, Adrian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201912</creationdate><title>A 3D Convolutional Neural Network for Light Field Depth Estimation</title><author>Faluvegi, Agota ; Bolsee, Quentin ; Nedevschi, Sergiu ; Dadarlat, Vasile-Teodor ; Munteanu, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-d5fbdd28f2125a096c8342d4981979da895aad74fc5164f47db7a06098ff826f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D convolution</topic><topic>CNN</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>depth estimation</topic><topic>disparity map</topic><topic>EPI</topic><topic>Estimation</topic><topic>Focusing</topic><topic>Light field image</topic><topic>Neural networks</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Faluvegi, Agota</creatorcontrib><creatorcontrib>Bolsee, Quentin</creatorcontrib><creatorcontrib>Nedevschi, Sergiu</creatorcontrib><creatorcontrib>Dadarlat, Vasile-Teodor</creatorcontrib><creatorcontrib>Munteanu, Adrian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Faluvegi, Agota</au><au>Bolsee, Quentin</au><au>Nedevschi, Sergiu</au><au>Dadarlat, Vasile-Teodor</au><au>Munteanu, Adrian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A 3D Convolutional Neural Network for Light Field Depth Estimation</atitle><btitle>2019 International Conference on 3D Immersion (IC3D)</btitle><stitle>IC3D</stitle><date>2019-12</date><risdate>2019</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2379-1780</eissn><eisbn>9781728151892</eisbn><eisbn>1728151899</eisbn><abstract>Depth estimation has always been a great challenge in the field of computer vision and machine learning. There is a rich literature focusing on depth estimation in stereo vision or in monocular imaging, while the domain of depth estimation in light field images is still in its infancy. The paper proposes a fully convolutional 3D neural network that estimates the disparity in light field images. The proposed method is parametric as it is able to adapt to input images of arbitrary size and it is lightweight and less prone to overfitting thanks to its fully convolutional nature. The experiments reveal competitive results against the state of the art, demonstrating the potential offered by deep learning solutions for disparity estimation in light field images.</abstract><pub>IEEE</pub><doi>10.1109/IC3D48390.2019.8975996</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-1780
ispartof 2019 International Conference on 3D Immersion (IC3D), 2019, p.1-5
issn 2379-1780
language eng
recordid cdi_ieee_primary_8975996
source IEEE Xplore All Conference Series
subjects 3D convolution
CNN
Computer vision
Convolution
Deep learning
depth estimation
disparity map
EPI
Estimation
Focusing
Light field image
Neural networks
Three-dimensional displays
title A 3D Convolutional Neural Network for Light Field Depth Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%203D%20Convolutional%20Neural%20Network%20for%20Light%20Field%20Depth%20Estimation&rft.btitle=2019%20International%20Conference%20on%203D%20Immersion%20(IC3D)&rft.au=Faluvegi,%20Agota&rft.date=2019-12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2379-1780&rft_id=info:doi/10.1109/IC3D48390.2019.8975996&rft.eisbn=9781728151892&rft.eisbn_list=1728151899&rft_dat=%3Cieee_CHZPO%3E8975996%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-d5fbdd28f2125a096c8342d4981979da895aad74fc5164f47db7a06098ff826f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8975996&rfr_iscdi=true