Loading…

ICDAR 2019 Competition on Document Image Binarization (DIBCO 2019)

DIBCO 2019 is the international Competition on Document Image Binarization organized in conjunction with the ICDAR 2019 conference. The general objective of the contest is to identify current advances in document image binarization of machine-printed and handwritten document images using performance...

Full description

Saved in:
Bibliographic Details
Main Authors: Pratikakis, Ioannis, Zagoris, Konstantinos, Karagiannis, Xenofon, Tsochatzidis, Lazaros, Mondal, Tanmoy, Marthot-Santaniello, Isabelle
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1556
container_issue
container_start_page 1547
container_title
container_volume
creator Pratikakis, Ioannis
Zagoris, Konstantinos
Karagiannis, Xenofon
Tsochatzidis, Lazaros
Mondal, Tanmoy
Marthot-Santaniello, Isabelle
description DIBCO 2019 is the international Competition on Document Image Binarization organized in conjunction with the ICDAR 2019 conference. The general objective of the contest is to identify current advances in document image binarization of machine-printed and handwritten document images using performance evaluation measures that are motivated by document image analysis and recognition requirements. This paper describes the competition details including the evaluation measures used as well as the performance of the 24 submitted methods along with a brief description of each method.
doi_str_mv 10.1109/ICDAR.2019.00249
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8978205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8978205</ieee_id><sourcerecordid>8978205</sourcerecordid><originalsourceid>FETCH-LOGICAL-i184t-8555b81edacd1e51eb429066dfc561de459002d599a63d79bca734bd0cb7d59b3</originalsourceid><addsrcrecordid>eNotj81Lw0AQxVdBsNbeBS856iFxZj-yO8cm8SNQKIiey252KysmKUk86F9vrMLAwHvvN7xh7AohQwS6q8tq_ZxxQMoAuKQTtiJtUHODAlDSKVtwoSnlKOGcXYzjO8xZonzBiiOb_LJJ2beHMMUp9l0yT9U3n23opqRu7VtIitjZIX7bo31T1UW5PWK3l-xsbz_GsPrfS_b6cP9SPqWb7WNdrjdpRCOn1CilnMHgbeMxKAxOcoI89_tG5eiDVDSX94rI5sJrco3VQjoPjdOz6sSSXf_djSGE3WGIrR2-dmb-lIMSPxpcRtc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ICDAR 2019 Competition on Document Image Binarization (DIBCO 2019)</title><source>IEEE Xplore All Conference Series</source><creator>Pratikakis, Ioannis ; Zagoris, Konstantinos ; Karagiannis, Xenofon ; Tsochatzidis, Lazaros ; Mondal, Tanmoy ; Marthot-Santaniello, Isabelle</creator><creatorcontrib>Pratikakis, Ioannis ; Zagoris, Konstantinos ; Karagiannis, Xenofon ; Tsochatzidis, Lazaros ; Mondal, Tanmoy ; Marthot-Santaniello, Isabelle</creatorcontrib><description>DIBCO 2019 is the international Competition on Document Image Binarization organized in conjunction with the ICDAR 2019 conference. The general objective of the contest is to identify current advances in document image binarization of machine-printed and handwritten document images using performance evaluation measures that are motivated by document image analysis and recognition requirements. This paper describes the competition details including the evaluation measures used as well as the performance of the 24 submitted methods along with a brief description of each method.</description><identifier>EISSN: 2379-2140</identifier><identifier>EISBN: 9781728130149</identifier><identifier>EISBN: 172813014X</identifier><identifier>DOI: 10.1109/ICDAR.2019.00249</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>binarization ; Convolution ; Gray-scale ; Handwriting recognition ; handwritten document image ; Image recognition ; Image segmentation ; machine-printed ; performance evaluation ; Text analysis ; Training</subject><ispartof>2019 International Conference on Document Analysis and Recognition (ICDAR), 2019, p.1547-1556</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8978205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54534,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8978205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pratikakis, Ioannis</creatorcontrib><creatorcontrib>Zagoris, Konstantinos</creatorcontrib><creatorcontrib>Karagiannis, Xenofon</creatorcontrib><creatorcontrib>Tsochatzidis, Lazaros</creatorcontrib><creatorcontrib>Mondal, Tanmoy</creatorcontrib><creatorcontrib>Marthot-Santaniello, Isabelle</creatorcontrib><title>ICDAR 2019 Competition on Document Image Binarization (DIBCO 2019)</title><title>2019 International Conference on Document Analysis and Recognition (ICDAR)</title><addtitle>ICDAR</addtitle><description>DIBCO 2019 is the international Competition on Document Image Binarization organized in conjunction with the ICDAR 2019 conference. The general objective of the contest is to identify current advances in document image binarization of machine-printed and handwritten document images using performance evaluation measures that are motivated by document image analysis and recognition requirements. This paper describes the competition details including the evaluation measures used as well as the performance of the 24 submitted methods along with a brief description of each method.</description><subject>binarization</subject><subject>Convolution</subject><subject>Gray-scale</subject><subject>Handwriting recognition</subject><subject>handwritten document image</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>machine-printed</subject><subject>performance evaluation</subject><subject>Text analysis</subject><subject>Training</subject><issn>2379-2140</issn><isbn>9781728130149</isbn><isbn>172813014X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Lw0AQxVdBsNbeBS856iFxZj-yO8cm8SNQKIiey252KysmKUk86F9vrMLAwHvvN7xh7AohQwS6q8tq_ZxxQMoAuKQTtiJtUHODAlDSKVtwoSnlKOGcXYzjO8xZonzBiiOb_LJJ2beHMMUp9l0yT9U3n23opqRu7VtIitjZIX7bo31T1UW5PWK3l-xsbz_GsPrfS_b6cP9SPqWb7WNdrjdpRCOn1CilnMHgbeMxKAxOcoI89_tG5eiDVDSX94rI5sJrco3VQjoPjdOz6sSSXf_djSGE3WGIrR2-dmb-lIMSPxpcRtc</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Pratikakis, Ioannis</creator><creator>Zagoris, Konstantinos</creator><creator>Karagiannis, Xenofon</creator><creator>Tsochatzidis, Lazaros</creator><creator>Mondal, Tanmoy</creator><creator>Marthot-Santaniello, Isabelle</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20190901</creationdate><title>ICDAR 2019 Competition on Document Image Binarization (DIBCO 2019)</title><author>Pratikakis, Ioannis ; Zagoris, Konstantinos ; Karagiannis, Xenofon ; Tsochatzidis, Lazaros ; Mondal, Tanmoy ; Marthot-Santaniello, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i184t-8555b81edacd1e51eb429066dfc561de459002d599a63d79bca734bd0cb7d59b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>binarization</topic><topic>Convolution</topic><topic>Gray-scale</topic><topic>Handwriting recognition</topic><topic>handwritten document image</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>machine-printed</topic><topic>performance evaluation</topic><topic>Text analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Pratikakis, Ioannis</creatorcontrib><creatorcontrib>Zagoris, Konstantinos</creatorcontrib><creatorcontrib>Karagiannis, Xenofon</creatorcontrib><creatorcontrib>Tsochatzidis, Lazaros</creatorcontrib><creatorcontrib>Mondal, Tanmoy</creatorcontrib><creatorcontrib>Marthot-Santaniello, Isabelle</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pratikakis, Ioannis</au><au>Zagoris, Konstantinos</au><au>Karagiannis, Xenofon</au><au>Tsochatzidis, Lazaros</au><au>Mondal, Tanmoy</au><au>Marthot-Santaniello, Isabelle</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ICDAR 2019 Competition on Document Image Binarization (DIBCO 2019)</atitle><btitle>2019 International Conference on Document Analysis and Recognition (ICDAR)</btitle><stitle>ICDAR</stitle><date>2019-09-01</date><risdate>2019</risdate><spage>1547</spage><epage>1556</epage><pages>1547-1556</pages><eissn>2379-2140</eissn><eisbn>9781728130149</eisbn><eisbn>172813014X</eisbn><coden>IEEPAD</coden><abstract>DIBCO 2019 is the international Competition on Document Image Binarization organized in conjunction with the ICDAR 2019 conference. The general objective of the contest is to identify current advances in document image binarization of machine-printed and handwritten document images using performance evaluation measures that are motivated by document image analysis and recognition requirements. This paper describes the competition details including the evaluation measures used as well as the performance of the 24 submitted methods along with a brief description of each method.</abstract><pub>IEEE</pub><doi>10.1109/ICDAR.2019.00249</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-2140
ispartof 2019 International Conference on Document Analysis and Recognition (ICDAR), 2019, p.1547-1556
issn 2379-2140
language eng
recordid cdi_ieee_primary_8978205
source IEEE Xplore All Conference Series
subjects binarization
Convolution
Gray-scale
Handwriting recognition
handwritten document image
Image recognition
Image segmentation
machine-printed
performance evaluation
Text analysis
Training
title ICDAR 2019 Competition on Document Image Binarization (DIBCO 2019)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ICDAR%202019%20Competition%20on%20Document%20Image%20Binarization%20(DIBCO%202019)&rft.btitle=2019%20International%20Conference%20on%20Document%20Analysis%20and%20Recognition%20(ICDAR)&rft.au=Pratikakis,%20Ioannis&rft.date=2019-09-01&rft.spage=1547&rft.epage=1556&rft.pages=1547-1556&rft.eissn=2379-2140&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDAR.2019.00249&rft.eisbn=9781728130149&rft.eisbn_list=172813014X&rft_dat=%3Cieee_CHZPO%3E8978205%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i184t-8555b81edacd1e51eb429066dfc561de459002d599a63d79bca734bd0cb7d59b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8978205&rfr_iscdi=true