Loading…
ICDAR 2019 Competition on Document Image Binarization (DIBCO 2019)
DIBCO 2019 is the international Competition on Document Image Binarization organized in conjunction with the ICDAR 2019 conference. The general objective of the contest is to identify current advances in document image binarization of machine-printed and handwritten document images using performance...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1556 |
container_issue | |
container_start_page | 1547 |
container_title | |
container_volume | |
creator | Pratikakis, Ioannis Zagoris, Konstantinos Karagiannis, Xenofon Tsochatzidis, Lazaros Mondal, Tanmoy Marthot-Santaniello, Isabelle |
description | DIBCO 2019 is the international Competition on Document Image Binarization organized in conjunction with the ICDAR 2019 conference. The general objective of the contest is to identify current advances in document image binarization of machine-printed and handwritten document images using performance evaluation measures that are motivated by document image analysis and recognition requirements. This paper describes the competition details including the evaluation measures used as well as the performance of the 24 submitted methods along with a brief description of each method. |
doi_str_mv | 10.1109/ICDAR.2019.00249 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8978205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8978205</ieee_id><sourcerecordid>8978205</sourcerecordid><originalsourceid>FETCH-LOGICAL-i184t-8555b81edacd1e51eb429066dfc561de459002d599a63d79bca734bd0cb7d59b3</originalsourceid><addsrcrecordid>eNotj81Lw0AQxVdBsNbeBS856iFxZj-yO8cm8SNQKIiey252KysmKUk86F9vrMLAwHvvN7xh7AohQwS6q8tq_ZxxQMoAuKQTtiJtUHODAlDSKVtwoSnlKOGcXYzjO8xZonzBiiOb_LJJ2beHMMUp9l0yT9U3n23opqRu7VtIitjZIX7bo31T1UW5PWK3l-xsbz_GsPrfS_b6cP9SPqWb7WNdrjdpRCOn1CilnMHgbeMxKAxOcoI89_tG5eiDVDSX94rI5sJrco3VQjoPjdOz6sSSXf_djSGE3WGIrR2-dmb-lIMSPxpcRtc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ICDAR 2019 Competition on Document Image Binarization (DIBCO 2019)</title><source>IEEE Xplore All Conference Series</source><creator>Pratikakis, Ioannis ; Zagoris, Konstantinos ; Karagiannis, Xenofon ; Tsochatzidis, Lazaros ; Mondal, Tanmoy ; Marthot-Santaniello, Isabelle</creator><creatorcontrib>Pratikakis, Ioannis ; Zagoris, Konstantinos ; Karagiannis, Xenofon ; Tsochatzidis, Lazaros ; Mondal, Tanmoy ; Marthot-Santaniello, Isabelle</creatorcontrib><description>DIBCO 2019 is the international Competition on Document Image Binarization organized in conjunction with the ICDAR 2019 conference. The general objective of the contest is to identify current advances in document image binarization of machine-printed and handwritten document images using performance evaluation measures that are motivated by document image analysis and recognition requirements. This paper describes the competition details including the evaluation measures used as well as the performance of the 24 submitted methods along with a brief description of each method.</description><identifier>EISSN: 2379-2140</identifier><identifier>EISBN: 9781728130149</identifier><identifier>EISBN: 172813014X</identifier><identifier>DOI: 10.1109/ICDAR.2019.00249</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>binarization ; Convolution ; Gray-scale ; Handwriting recognition ; handwritten document image ; Image recognition ; Image segmentation ; machine-printed ; performance evaluation ; Text analysis ; Training</subject><ispartof>2019 International Conference on Document Analysis and Recognition (ICDAR), 2019, p.1547-1556</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8978205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54534,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8978205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pratikakis, Ioannis</creatorcontrib><creatorcontrib>Zagoris, Konstantinos</creatorcontrib><creatorcontrib>Karagiannis, Xenofon</creatorcontrib><creatorcontrib>Tsochatzidis, Lazaros</creatorcontrib><creatorcontrib>Mondal, Tanmoy</creatorcontrib><creatorcontrib>Marthot-Santaniello, Isabelle</creatorcontrib><title>ICDAR 2019 Competition on Document Image Binarization (DIBCO 2019)</title><title>2019 International Conference on Document Analysis and Recognition (ICDAR)</title><addtitle>ICDAR</addtitle><description>DIBCO 2019 is the international Competition on Document Image Binarization organized in conjunction with the ICDAR 2019 conference. The general objective of the contest is to identify current advances in document image binarization of machine-printed and handwritten document images using performance evaluation measures that are motivated by document image analysis and recognition requirements. This paper describes the competition details including the evaluation measures used as well as the performance of the 24 submitted methods along with a brief description of each method.</description><subject>binarization</subject><subject>Convolution</subject><subject>Gray-scale</subject><subject>Handwriting recognition</subject><subject>handwritten document image</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>machine-printed</subject><subject>performance evaluation</subject><subject>Text analysis</subject><subject>Training</subject><issn>2379-2140</issn><isbn>9781728130149</isbn><isbn>172813014X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Lw0AQxVdBsNbeBS856iFxZj-yO8cm8SNQKIiey252KysmKUk86F9vrMLAwHvvN7xh7AohQwS6q8tq_ZxxQMoAuKQTtiJtUHODAlDSKVtwoSnlKOGcXYzjO8xZonzBiiOb_LJJ2beHMMUp9l0yT9U3n23opqRu7VtIitjZIX7bo31T1UW5PWK3l-xsbz_GsPrfS_b6cP9SPqWb7WNdrjdpRCOn1CilnMHgbeMxKAxOcoI89_tG5eiDVDSX94rI5sJrco3VQjoPjdOz6sSSXf_djSGE3WGIrR2-dmb-lIMSPxpcRtc</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Pratikakis, Ioannis</creator><creator>Zagoris, Konstantinos</creator><creator>Karagiannis, Xenofon</creator><creator>Tsochatzidis, Lazaros</creator><creator>Mondal, Tanmoy</creator><creator>Marthot-Santaniello, Isabelle</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20190901</creationdate><title>ICDAR 2019 Competition on Document Image Binarization (DIBCO 2019)</title><author>Pratikakis, Ioannis ; Zagoris, Konstantinos ; Karagiannis, Xenofon ; Tsochatzidis, Lazaros ; Mondal, Tanmoy ; Marthot-Santaniello, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i184t-8555b81edacd1e51eb429066dfc561de459002d599a63d79bca734bd0cb7d59b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>binarization</topic><topic>Convolution</topic><topic>Gray-scale</topic><topic>Handwriting recognition</topic><topic>handwritten document image</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>machine-printed</topic><topic>performance evaluation</topic><topic>Text analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Pratikakis, Ioannis</creatorcontrib><creatorcontrib>Zagoris, Konstantinos</creatorcontrib><creatorcontrib>Karagiannis, Xenofon</creatorcontrib><creatorcontrib>Tsochatzidis, Lazaros</creatorcontrib><creatorcontrib>Mondal, Tanmoy</creatorcontrib><creatorcontrib>Marthot-Santaniello, Isabelle</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pratikakis, Ioannis</au><au>Zagoris, Konstantinos</au><au>Karagiannis, Xenofon</au><au>Tsochatzidis, Lazaros</au><au>Mondal, Tanmoy</au><au>Marthot-Santaniello, Isabelle</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ICDAR 2019 Competition on Document Image Binarization (DIBCO 2019)</atitle><btitle>2019 International Conference on Document Analysis and Recognition (ICDAR)</btitle><stitle>ICDAR</stitle><date>2019-09-01</date><risdate>2019</risdate><spage>1547</spage><epage>1556</epage><pages>1547-1556</pages><eissn>2379-2140</eissn><eisbn>9781728130149</eisbn><eisbn>172813014X</eisbn><coden>IEEPAD</coden><abstract>DIBCO 2019 is the international Competition on Document Image Binarization organized in conjunction with the ICDAR 2019 conference. The general objective of the contest is to identify current advances in document image binarization of machine-printed and handwritten document images using performance evaluation measures that are motivated by document image analysis and recognition requirements. This paper describes the competition details including the evaluation measures used as well as the performance of the 24 submitted methods along with a brief description of each method.</abstract><pub>IEEE</pub><doi>10.1109/ICDAR.2019.00249</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-2140 |
ispartof | 2019 International Conference on Document Analysis and Recognition (ICDAR), 2019, p.1547-1556 |
issn | 2379-2140 |
language | eng |
recordid | cdi_ieee_primary_8978205 |
source | IEEE Xplore All Conference Series |
subjects | binarization Convolution Gray-scale Handwriting recognition handwritten document image Image recognition Image segmentation machine-printed performance evaluation Text analysis Training |
title | ICDAR 2019 Competition on Document Image Binarization (DIBCO 2019) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ICDAR%202019%20Competition%20on%20Document%20Image%20Binarization%20(DIBCO%202019)&rft.btitle=2019%20International%20Conference%20on%20Document%20Analysis%20and%20Recognition%20(ICDAR)&rft.au=Pratikakis,%20Ioannis&rft.date=2019-09-01&rft.spage=1547&rft.epage=1556&rft.pages=1547-1556&rft.eissn=2379-2140&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDAR.2019.00249&rft.eisbn=9781728130149&rft.eisbn_list=172813014X&rft_dat=%3Cieee_CHZPO%3E8978205%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i184t-8555b81edacd1e51eb429066dfc561de459002d599a63d79bca734bd0cb7d59b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8978205&rfr_iscdi=true |