Loading…

A Revised KDD Procedure for the Modeling of Continuous Production in Powder Processing

In this paper, a revised Knowledge Discovery in Databases (KDD) procedure is proposed, which is designed especially for data mining in powder processing and other types of continuous production. The revised KDD procedure includes data preprocessing, feature engineering, machine learning and model ev...

Full description

Saved in:
Bibliographic Details
Main Authors: Vernickel, K., Weber, J., Li, X., Berg, J., Reinhart, G.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 344
container_issue
container_start_page 340
container_title
container_volume
creator Vernickel, K.
Weber, J.
Li, X.
Berg, J.
Reinhart, G.
description In this paper, a revised Knowledge Discovery in Databases (KDD) procedure is proposed, which is designed especially for data mining in powder processing and other types of continuous production. The revised KDD procedure includes data preprocessing, feature engineering, machine learning and model evaluation. The proposed methods are implemented and evaluated using a dataset from a fluidized bed opposed jet mill. The evaluation results show that the machine learning model can accurately predict the product quality in this scenario and capture the internal relations between processing parameters and product quality.
doi_str_mv 10.1109/IEEM44572.2019.8978828
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8978828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8978828</ieee_id><sourcerecordid>8978828</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-ec947b641d18d438555916cc90ebe70caf0e9d041326aca2eb2f264d3ca38ce3</originalsourceid><addsrcrecordid>eNotkNFKwzAYhaMgOGafQJC8QGfyJ02Ty9FVHW44ZIh3o03-amQ2krSKb-9kuzrn4vvOxSHkhrMZ58zcLut6LWVRwgwYNzNtSq1Bn5HsUHgJmgvNpDonE-BFmQsFr5ckS-mDMcZBKzBqQl7m9Bm_fUJHHxcLuonBohsj0i5EOrwjXQeHe9-_0dDRKvSD78cwpn_QjXbwoae-p5vw4zAe7ZQO9BW56Jp9wuyUU7K9q7fVQ756ul9W81XugYkhR2tk2SrJHddOCl0UheHKWsOwxZLZpmNoHJNcgGpsA9hCB0o6YRuhLYopuT7OekTcfUX_2cTf3ekI8QfSW1Lv</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Revised KDD Procedure for the Modeling of Continuous Production in Powder Processing</title><source>IEEE Xplore All Conference Series</source><creator>Vernickel, K. ; Weber, J. ; Li, X. ; Berg, J. ; Reinhart, G.</creator><creatorcontrib>Vernickel, K. ; Weber, J. ; Li, X. ; Berg, J. ; Reinhart, G.</creatorcontrib><description>In this paper, a revised Knowledge Discovery in Databases (KDD) procedure is proposed, which is designed especially for data mining in powder processing and other types of continuous production. The revised KDD procedure includes data preprocessing, feature engineering, machine learning and model evaluation. The proposed methods are implemented and evaluated using a dataset from a fluidized bed opposed jet mill. The evaluation results show that the machine learning model can accurately predict the product quality in this scenario and capture the internal relations between processing parameters and product quality.</description><identifier>EISSN: 2157-362X</identifier><identifier>EISBN: 9781728138046</identifier><identifier>EISBN: 1728138043</identifier><identifier>DOI: 10.1109/IEEM44572.2019.8978828</identifier><language>eng</language><publisher>IEEE</publisher><subject>KDD ; Machine Learning ; Powder Processing</subject><ispartof>2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2019, p.340-344</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8978828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8978828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vernickel, K.</creatorcontrib><creatorcontrib>Weber, J.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><creatorcontrib>Berg, J.</creatorcontrib><creatorcontrib>Reinhart, G.</creatorcontrib><title>A Revised KDD Procedure for the Modeling of Continuous Production in Powder Processing</title><title>2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)</title><addtitle>IEEM</addtitle><description>In this paper, a revised Knowledge Discovery in Databases (KDD) procedure is proposed, which is designed especially for data mining in powder processing and other types of continuous production. The revised KDD procedure includes data preprocessing, feature engineering, machine learning and model evaluation. The proposed methods are implemented and evaluated using a dataset from a fluidized bed opposed jet mill. The evaluation results show that the machine learning model can accurately predict the product quality in this scenario and capture the internal relations between processing parameters and product quality.</description><subject>KDD</subject><subject>Machine Learning</subject><subject>Powder Processing</subject><issn>2157-362X</issn><isbn>9781728138046</isbn><isbn>1728138043</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNFKwzAYhaMgOGafQJC8QGfyJ02Ty9FVHW44ZIh3o03-amQ2krSKb-9kuzrn4vvOxSHkhrMZ58zcLut6LWVRwgwYNzNtSq1Bn5HsUHgJmgvNpDonE-BFmQsFr5ckS-mDMcZBKzBqQl7m9Bm_fUJHHxcLuonBohsj0i5EOrwjXQeHe9-_0dDRKvSD78cwpn_QjXbwoae-p5vw4zAe7ZQO9BW56Jp9wuyUU7K9q7fVQ756ul9W81XugYkhR2tk2SrJHddOCl0UheHKWsOwxZLZpmNoHJNcgGpsA9hCB0o6YRuhLYopuT7OekTcfUX_2cTf3ekI8QfSW1Lv</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Vernickel, K.</creator><creator>Weber, J.</creator><creator>Li, X.</creator><creator>Berg, J.</creator><creator>Reinhart, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201912</creationdate><title>A Revised KDD Procedure for the Modeling of Continuous Production in Powder Processing</title><author>Vernickel, K. ; Weber, J. ; Li, X. ; Berg, J. ; Reinhart, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-ec947b641d18d438555916cc90ebe70caf0e9d041326aca2eb2f264d3ca38ce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>KDD</topic><topic>Machine Learning</topic><topic>Powder Processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Vernickel, K.</creatorcontrib><creatorcontrib>Weber, J.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><creatorcontrib>Berg, J.</creatorcontrib><creatorcontrib>Reinhart, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vernickel, K.</au><au>Weber, J.</au><au>Li, X.</au><au>Berg, J.</au><au>Reinhart, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Revised KDD Procedure for the Modeling of Continuous Production in Powder Processing</atitle><btitle>2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)</btitle><stitle>IEEM</stitle><date>2019-12</date><risdate>2019</risdate><spage>340</spage><epage>344</epage><pages>340-344</pages><eissn>2157-362X</eissn><eisbn>9781728138046</eisbn><eisbn>1728138043</eisbn><abstract>In this paper, a revised Knowledge Discovery in Databases (KDD) procedure is proposed, which is designed especially for data mining in powder processing and other types of continuous production. The revised KDD procedure includes data preprocessing, feature engineering, machine learning and model evaluation. The proposed methods are implemented and evaluated using a dataset from a fluidized bed opposed jet mill. The evaluation results show that the machine learning model can accurately predict the product quality in this scenario and capture the internal relations between processing parameters and product quality.</abstract><pub>IEEE</pub><doi>10.1109/IEEM44572.2019.8978828</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2157-362X
ispartof 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2019, p.340-344
issn 2157-362X
language eng
recordid cdi_ieee_primary_8978828
source IEEE Xplore All Conference Series
subjects KDD
Machine Learning
Powder Processing
title A Revised KDD Procedure for the Modeling of Continuous Production in Powder Processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Revised%20KDD%20Procedure%20for%20the%20Modeling%20of%20Continuous%20Production%20in%20Powder%20Processing&rft.btitle=2019%20IEEE%20International%20Conference%20on%20Industrial%20Engineering%20and%20Engineering%20Management%20(IEEM)&rft.au=Vernickel,%20K.&rft.date=2019-12&rft.spage=340&rft.epage=344&rft.pages=340-344&rft.eissn=2157-362X&rft_id=info:doi/10.1109/IEEM44572.2019.8978828&rft.eisbn=9781728138046&rft.eisbn_list=1728138043&rft_dat=%3Cieee_CHZPO%3E8978828%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-ec947b641d18d438555916cc90ebe70caf0e9d041326aca2eb2f264d3ca38ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8978828&rfr_iscdi=true