Loading…
A Revised KDD Procedure for the Modeling of Continuous Production in Powder Processing
In this paper, a revised Knowledge Discovery in Databases (KDD) procedure is proposed, which is designed especially for data mining in powder processing and other types of continuous production. The revised KDD procedure includes data preprocessing, feature engineering, machine learning and model ev...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 344 |
container_issue | |
container_start_page | 340 |
container_title | |
container_volume | |
creator | Vernickel, K. Weber, J. Li, X. Berg, J. Reinhart, G. |
description | In this paper, a revised Knowledge Discovery in Databases (KDD) procedure is proposed, which is designed especially for data mining in powder processing and other types of continuous production. The revised KDD procedure includes data preprocessing, feature engineering, machine learning and model evaluation. The proposed methods are implemented and evaluated using a dataset from a fluidized bed opposed jet mill. The evaluation results show that the machine learning model can accurately predict the product quality in this scenario and capture the internal relations between processing parameters and product quality. |
doi_str_mv | 10.1109/IEEM44572.2019.8978828 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8978828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8978828</ieee_id><sourcerecordid>8978828</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-ec947b641d18d438555916cc90ebe70caf0e9d041326aca2eb2f264d3ca38ce3</originalsourceid><addsrcrecordid>eNotkNFKwzAYhaMgOGafQJC8QGfyJ02Ty9FVHW44ZIh3o03-amQ2krSKb-9kuzrn4vvOxSHkhrMZ58zcLut6LWVRwgwYNzNtSq1Bn5HsUHgJmgvNpDonE-BFmQsFr5ckS-mDMcZBKzBqQl7m9Bm_fUJHHxcLuonBohsj0i5EOrwjXQeHe9-_0dDRKvSD78cwpn_QjXbwoae-p5vw4zAe7ZQO9BW56Jp9wuyUU7K9q7fVQ756ul9W81XugYkhR2tk2SrJHddOCl0UheHKWsOwxZLZpmNoHJNcgGpsA9hCB0o6YRuhLYopuT7OekTcfUX_2cTf3ekI8QfSW1Lv</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Revised KDD Procedure for the Modeling of Continuous Production in Powder Processing</title><source>IEEE Xplore All Conference Series</source><creator>Vernickel, K. ; Weber, J. ; Li, X. ; Berg, J. ; Reinhart, G.</creator><creatorcontrib>Vernickel, K. ; Weber, J. ; Li, X. ; Berg, J. ; Reinhart, G.</creatorcontrib><description>In this paper, a revised Knowledge Discovery in Databases (KDD) procedure is proposed, which is designed especially for data mining in powder processing and other types of continuous production. The revised KDD procedure includes data preprocessing, feature engineering, machine learning and model evaluation. The proposed methods are implemented and evaluated using a dataset from a fluidized bed opposed jet mill. The evaluation results show that the machine learning model can accurately predict the product quality in this scenario and capture the internal relations between processing parameters and product quality.</description><identifier>EISSN: 2157-362X</identifier><identifier>EISBN: 9781728138046</identifier><identifier>EISBN: 1728138043</identifier><identifier>DOI: 10.1109/IEEM44572.2019.8978828</identifier><language>eng</language><publisher>IEEE</publisher><subject>KDD ; Machine Learning ; Powder Processing</subject><ispartof>2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2019, p.340-344</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8978828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8978828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vernickel, K.</creatorcontrib><creatorcontrib>Weber, J.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><creatorcontrib>Berg, J.</creatorcontrib><creatorcontrib>Reinhart, G.</creatorcontrib><title>A Revised KDD Procedure for the Modeling of Continuous Production in Powder Processing</title><title>2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)</title><addtitle>IEEM</addtitle><description>In this paper, a revised Knowledge Discovery in Databases (KDD) procedure is proposed, which is designed especially for data mining in powder processing and other types of continuous production. The revised KDD procedure includes data preprocessing, feature engineering, machine learning and model evaluation. The proposed methods are implemented and evaluated using a dataset from a fluidized bed opposed jet mill. The evaluation results show that the machine learning model can accurately predict the product quality in this scenario and capture the internal relations between processing parameters and product quality.</description><subject>KDD</subject><subject>Machine Learning</subject><subject>Powder Processing</subject><issn>2157-362X</issn><isbn>9781728138046</isbn><isbn>1728138043</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNFKwzAYhaMgOGafQJC8QGfyJ02Ty9FVHW44ZIh3o03-amQ2krSKb-9kuzrn4vvOxSHkhrMZ58zcLut6LWVRwgwYNzNtSq1Bn5HsUHgJmgvNpDonE-BFmQsFr5ckS-mDMcZBKzBqQl7m9Bm_fUJHHxcLuonBohsj0i5EOrwjXQeHe9-_0dDRKvSD78cwpn_QjXbwoae-p5vw4zAe7ZQO9BW56Jp9wuyUU7K9q7fVQ756ul9W81XugYkhR2tk2SrJHddOCl0UheHKWsOwxZLZpmNoHJNcgGpsA9hCB0o6YRuhLYopuT7OekTcfUX_2cTf3ekI8QfSW1Lv</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Vernickel, K.</creator><creator>Weber, J.</creator><creator>Li, X.</creator><creator>Berg, J.</creator><creator>Reinhart, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201912</creationdate><title>A Revised KDD Procedure for the Modeling of Continuous Production in Powder Processing</title><author>Vernickel, K. ; Weber, J. ; Li, X. ; Berg, J. ; Reinhart, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-ec947b641d18d438555916cc90ebe70caf0e9d041326aca2eb2f264d3ca38ce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>KDD</topic><topic>Machine Learning</topic><topic>Powder Processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Vernickel, K.</creatorcontrib><creatorcontrib>Weber, J.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><creatorcontrib>Berg, J.</creatorcontrib><creatorcontrib>Reinhart, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vernickel, K.</au><au>Weber, J.</au><au>Li, X.</au><au>Berg, J.</au><au>Reinhart, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Revised KDD Procedure for the Modeling of Continuous Production in Powder Processing</atitle><btitle>2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)</btitle><stitle>IEEM</stitle><date>2019-12</date><risdate>2019</risdate><spage>340</spage><epage>344</epage><pages>340-344</pages><eissn>2157-362X</eissn><eisbn>9781728138046</eisbn><eisbn>1728138043</eisbn><abstract>In this paper, a revised Knowledge Discovery in Databases (KDD) procedure is proposed, which is designed especially for data mining in powder processing and other types of continuous production. The revised KDD procedure includes data preprocessing, feature engineering, machine learning and model evaluation. The proposed methods are implemented and evaluated using a dataset from a fluidized bed opposed jet mill. The evaluation results show that the machine learning model can accurately predict the product quality in this scenario and capture the internal relations between processing parameters and product quality.</abstract><pub>IEEE</pub><doi>10.1109/IEEM44572.2019.8978828</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2157-362X |
ispartof | 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2019, p.340-344 |
issn | 2157-362X |
language | eng |
recordid | cdi_ieee_primary_8978828 |
source | IEEE Xplore All Conference Series |
subjects | KDD Machine Learning Powder Processing |
title | A Revised KDD Procedure for the Modeling of Continuous Production in Powder Processing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Revised%20KDD%20Procedure%20for%20the%20Modeling%20of%20Continuous%20Production%20in%20Powder%20Processing&rft.btitle=2019%20IEEE%20International%20Conference%20on%20Industrial%20Engineering%20and%20Engineering%20Management%20(IEEM)&rft.au=Vernickel,%20K.&rft.date=2019-12&rft.spage=340&rft.epage=344&rft.pages=340-344&rft.eissn=2157-362X&rft_id=info:doi/10.1109/IEEM44572.2019.8978828&rft.eisbn=9781728138046&rft.eisbn_list=1728138043&rft_dat=%3Cieee_CHZPO%3E8978828%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-ec947b641d18d438555916cc90ebe70caf0e9d041326aca2eb2f264d3ca38ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8978828&rfr_iscdi=true |