Loading…
On Linear Learning with Manycore Processors
A new generation of manycore processors is on the rise that offers dozens and more cores on a chip and, in a sense, fuses host processor and accelerator. In this paper we target the efficient training of generalized linear models on these machines. We propose a novel approach for achieving paralleli...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 194 |
container_issue | |
container_start_page | 184 |
container_title | |
container_volume | |
creator | Wszola, Eliza Mendler-Dunner, Celestine Jaggi, Martin Puschel, Markus |
description | A new generation of manycore processors is on the rise that offers dozens and more cores on a chip and, in a sense, fuses host processor and accelerator. In this paper we target the efficient training of generalized linear models on these machines. We propose a novel approach for achieving parallelism which we call Heterogeneous Tasks on Homogeneous Cores (HTHC). It divides the problem into multiple fundamentally different tasks, which themselves are parallelized. For evaluation, we design a detailed, architecture-cognizant implementation of our scheme on a recent 72-core Knights Landing processor that is adaptive to the cache, memory, and core structure. Our library efficiently supports dense and sparse datasets as well as 4-bit quantized data for further possible gains in performance. We show benchmarks for Lasso and SVM with different data sets against straightforward parallel implementations and prior software. In particular, for Lasso on dense data, we improve the state-of-the-art by an order of magnitude. |
doi_str_mv | 10.1109/HiPC.2019.00032 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8990546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8990546</ieee_id><sourcerecordid>8990546</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-68a2caa6255802ebaa3971ed868c8d4080af315757ea8766b7d4e7df9aa5409b3</originalsourceid><addsrcrecordid>eNotjE1Lw0AUAFdBsNaePXjJXRLffr89SlArRNqDnstL8qIrupHdgvTfW9DLzGUYIa4kNFJCuF3HbdsokKEBAK1OxCp4lF6hNFZbPBUL5QzUoKU7FxelfAAca2UX4maTqi4mplx1R6SY3qqfuH-vnikdhjlztc3zwKXMuVyKs4k-C6_-vRSvD_cv7bruNo9P7V1XRwV6XzskNRA5ZS2C4p5IBy95RIcDjgYQaNLSeuuZ0DvX-9GwH6dAZA2EXi_F9d83MvPuO8cvyocdhgDWOP0LdqNBFw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On Linear Learning with Manycore Processors</title><source>IEEE Xplore All Conference Series</source><creator>Wszola, Eliza ; Mendler-Dunner, Celestine ; Jaggi, Martin ; Puschel, Markus</creator><creatorcontrib>Wszola, Eliza ; Mendler-Dunner, Celestine ; Jaggi, Martin ; Puschel, Markus</creatorcontrib><description>A new generation of manycore processors is on the rise that offers dozens and more cores on a chip and, in a sense, fuses host processor and accelerator. In this paper we target the efficient training of generalized linear models on these machines. We propose a novel approach for achieving parallelism which we call Heterogeneous Tasks on Homogeneous Cores (HTHC). It divides the problem into multiple fundamentally different tasks, which themselves are parallelized. For evaluation, we design a detailed, architecture-cognizant implementation of our scheme on a recent 72-core Knights Landing processor that is adaptive to the cache, memory, and core structure. Our library efficiently supports dense and sparse datasets as well as 4-bit quantized data for further possible gains in performance. We show benchmarks for Lasso and SVM with different data sets against straightforward parallel implementations and prior software. In particular, for Lasso on dense data, we improve the state-of-the-art by an order of magnitude.</description><identifier>EISSN: 2640-0316</identifier><identifier>EISBN: 9781728145358</identifier><identifier>EISBN: 172814535X</identifier><identifier>DOI: 10.1109/HiPC.2019.00032</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; coordinate descent ; GLM ; Instruction sets ; Lasso ; Machine learning ; Manycore ; Manycore processors ; Support vector machines ; SVM ; Task analysis</subject><ispartof>2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC), 2019, p.184-194</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8990546$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8990546$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wszola, Eliza</creatorcontrib><creatorcontrib>Mendler-Dunner, Celestine</creatorcontrib><creatorcontrib>Jaggi, Martin</creatorcontrib><creatorcontrib>Puschel, Markus</creatorcontrib><title>On Linear Learning with Manycore Processors</title><title>2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC)</title><addtitle>HIPC</addtitle><description>A new generation of manycore processors is on the rise that offers dozens and more cores on a chip and, in a sense, fuses host processor and accelerator. In this paper we target the efficient training of generalized linear models on these machines. We propose a novel approach for achieving parallelism which we call Heterogeneous Tasks on Homogeneous Cores (HTHC). It divides the problem into multiple fundamentally different tasks, which themselves are parallelized. For evaluation, we design a detailed, architecture-cognizant implementation of our scheme on a recent 72-core Knights Landing processor that is adaptive to the cache, memory, and core structure. Our library efficiently supports dense and sparse datasets as well as 4-bit quantized data for further possible gains in performance. We show benchmarks for Lasso and SVM with different data sets against straightforward parallel implementations and prior software. In particular, for Lasso on dense data, we improve the state-of-the-art by an order of magnitude.</description><subject>Computational modeling</subject><subject>coordinate descent</subject><subject>GLM</subject><subject>Instruction sets</subject><subject>Lasso</subject><subject>Machine learning</subject><subject>Manycore</subject><subject>Manycore processors</subject><subject>Support vector machines</subject><subject>SVM</subject><subject>Task analysis</subject><issn>2640-0316</issn><isbn>9781728145358</isbn><isbn>172814535X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1Lw0AUAFdBsNaePXjJXRLffr89SlArRNqDnstL8qIrupHdgvTfW9DLzGUYIa4kNFJCuF3HbdsokKEBAK1OxCp4lF6hNFZbPBUL5QzUoKU7FxelfAAca2UX4maTqi4mplx1R6SY3qqfuH-vnikdhjlztc3zwKXMuVyKs4k-C6_-vRSvD_cv7bruNo9P7V1XRwV6XzskNRA5ZS2C4p5IBy95RIcDjgYQaNLSeuuZ0DvX-9GwH6dAZA2EXi_F9d83MvPuO8cvyocdhgDWOP0LdqNBFw</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Wszola, Eliza</creator><creator>Mendler-Dunner, Celestine</creator><creator>Jaggi, Martin</creator><creator>Puschel, Markus</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201912</creationdate><title>On Linear Learning with Manycore Processors</title><author>Wszola, Eliza ; Mendler-Dunner, Celestine ; Jaggi, Martin ; Puschel, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-68a2caa6255802ebaa3971ed868c8d4080af315757ea8766b7d4e7df9aa5409b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational modeling</topic><topic>coordinate descent</topic><topic>GLM</topic><topic>Instruction sets</topic><topic>Lasso</topic><topic>Machine learning</topic><topic>Manycore</topic><topic>Manycore processors</topic><topic>Support vector machines</topic><topic>SVM</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Wszola, Eliza</creatorcontrib><creatorcontrib>Mendler-Dunner, Celestine</creatorcontrib><creatorcontrib>Jaggi, Martin</creatorcontrib><creatorcontrib>Puschel, Markus</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wszola, Eliza</au><au>Mendler-Dunner, Celestine</au><au>Jaggi, Martin</au><au>Puschel, Markus</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On Linear Learning with Manycore Processors</atitle><btitle>2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC)</btitle><stitle>HIPC</stitle><date>2019-12</date><risdate>2019</risdate><spage>184</spage><epage>194</epage><pages>184-194</pages><eissn>2640-0316</eissn><eisbn>9781728145358</eisbn><eisbn>172814535X</eisbn><coden>IEEPAD</coden><abstract>A new generation of manycore processors is on the rise that offers dozens and more cores on a chip and, in a sense, fuses host processor and accelerator. In this paper we target the efficient training of generalized linear models on these machines. We propose a novel approach for achieving parallelism which we call Heterogeneous Tasks on Homogeneous Cores (HTHC). It divides the problem into multiple fundamentally different tasks, which themselves are parallelized. For evaluation, we design a detailed, architecture-cognizant implementation of our scheme on a recent 72-core Knights Landing processor that is adaptive to the cache, memory, and core structure. Our library efficiently supports dense and sparse datasets as well as 4-bit quantized data for further possible gains in performance. We show benchmarks for Lasso and SVM with different data sets against straightforward parallel implementations and prior software. In particular, for Lasso on dense data, we improve the state-of-the-art by an order of magnitude.</abstract><pub>IEEE</pub><doi>10.1109/HiPC.2019.00032</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2640-0316 |
ispartof | 2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC), 2019, p.184-194 |
issn | 2640-0316 |
language | eng |
recordid | cdi_ieee_primary_8990546 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling coordinate descent GLM Instruction sets Lasso Machine learning Manycore Manycore processors Support vector machines SVM Task analysis |
title | On Linear Learning with Manycore Processors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20Linear%20Learning%20with%20Manycore%20Processors&rft.btitle=2019%20IEEE%2026th%20International%20Conference%20on%20High%20Performance%20Computing,%20Data,%20and%20Analytics%20(HiPC)&rft.au=Wszola,%20Eliza&rft.date=2019-12&rft.spage=184&rft.epage=194&rft.pages=184-194&rft.eissn=2640-0316&rft.coden=IEEPAD&rft_id=info:doi/10.1109/HiPC.2019.00032&rft.eisbn=9781728145358&rft.eisbn_list=172814535X&rft_dat=%3Cieee_CHZPO%3E8990546%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-68a2caa6255802ebaa3971ed868c8d4080af315757ea8766b7d4e7df9aa5409b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8990546&rfr_iscdi=true |