Loading…
Knowledge Graph Embedding by Bias Vectors
Knowledge graph completion can predict the possible relation between entities. Previous work such as TransE, TransR, TransPES and GTrans embed knowledge graph into vector space and treat relations between entities as translations. In most cases, the more complex the algorithm is, the better the resu...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1302 |
container_issue | |
container_start_page | 1296 |
container_title | |
container_volume | |
creator | Ding, Minjie Tong, Weiqin Ding, Xuehai Zhi, Xiaoli Wang, Xiao Zhang, Guoqing |
description | Knowledge graph completion can predict the possible relation between entities. Previous work such as TransE, TransR, TransPES and GTrans embed knowledge graph into vector space and treat relations between entities as translations. In most cases, the more complex the algorithm is, the better the result will be, but it is difficult to apply to large-scale knowledge graphs. Therefore, we propose TransB, an efficient model, in this paper. We avoid the complex matrix or vector multiplication operation. Meanwhile, we make the representation of entities not too simple, which can satisfy the operation in the case of non-one-to-one relation. We use link prediction to evaluate the performance of our model in the experiment. The experimental results show that our model is valid and has low time complexity. |
doi_str_mv | 10.1109/ICTAI.2019.00180 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8995354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8995354</ieee_id><sourcerecordid>8995354</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-c2ce5ce9a54833300594767b6948278c8dbe2fa180ddda8b1dfb2b03370dca713</originalsourceid><addsrcrecordid>eNotjj1LA0EUAFdBMCbpBZtrLe58u-82-7aMRxIPA2mibdiPd3ElX9wGJP_egFbTDMMI8SihkhLsS9usp22lQNoKQBLciLE1JI0iicYS3YqBQqPLq2DuxUPO3wAKtMKBeH4_HH92HLdcLHp3-ipme88xpsO28JfiNblcfHI4H_s8Ened22Ue_3MoPuazdfNWLleLtpkuy6QAz2VQgXVg63RNiAigbW0mxk9sTcpQoOhZde56GWN05GXsvPKAaCAGZyQOxdNfNzHz5tSnvesvG7JWo67xF-SgQFI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Knowledge Graph Embedding by Bias Vectors</title><source>IEEE Xplore All Conference Series</source><creator>Ding, Minjie ; Tong, Weiqin ; Ding, Xuehai ; Zhi, Xiaoli ; Wang, Xiao ; Zhang, Guoqing</creator><creatorcontrib>Ding, Minjie ; Tong, Weiqin ; Ding, Xuehai ; Zhi, Xiaoli ; Wang, Xiao ; Zhang, Guoqing</creatorcontrib><description>Knowledge graph completion can predict the possible relation between entities. Previous work such as TransE, TransR, TransPES and GTrans embed knowledge graph into vector space and treat relations between entities as translations. In most cases, the more complex the algorithm is, the better the result will be, but it is difficult to apply to large-scale knowledge graphs. Therefore, we propose TransB, an efficient model, in this paper. We avoid the complex matrix or vector multiplication operation. Meanwhile, we make the representation of entities not too simple, which can satisfy the operation in the case of non-one-to-one relation. We use link prediction to evaluate the performance of our model in the experiment. The experimental results show that our model is valid and has low time complexity.</description><identifier>EISSN: 2375-0197</identifier><identifier>EISBN: 9781728137988</identifier><identifier>EISBN: 1728137985</identifier><identifier>DOI: 10.1109/ICTAI.2019.00180</identifier><language>eng</language><publisher>IEEE</publisher><subject>knowledge completion ; knowledge embedding ; link prediction ; triplets</subject><ispartof>2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019, p.1296-1302</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8995354$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8995354$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ding, Minjie</creatorcontrib><creatorcontrib>Tong, Weiqin</creatorcontrib><creatorcontrib>Ding, Xuehai</creatorcontrib><creatorcontrib>Zhi, Xiaoli</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Zhang, Guoqing</creatorcontrib><title>Knowledge Graph Embedding by Bias Vectors</title><title>2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)</title><addtitle>TAI</addtitle><description>Knowledge graph completion can predict the possible relation between entities. Previous work such as TransE, TransR, TransPES and GTrans embed knowledge graph into vector space and treat relations between entities as translations. In most cases, the more complex the algorithm is, the better the result will be, but it is difficult to apply to large-scale knowledge graphs. Therefore, we propose TransB, an efficient model, in this paper. We avoid the complex matrix or vector multiplication operation. Meanwhile, we make the representation of entities not too simple, which can satisfy the operation in the case of non-one-to-one relation. We use link prediction to evaluate the performance of our model in the experiment. The experimental results show that our model is valid and has low time complexity.</description><subject>knowledge completion</subject><subject>knowledge embedding</subject><subject>link prediction</subject><subject>triplets</subject><issn>2375-0197</issn><isbn>9781728137988</isbn><isbn>1728137985</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjj1LA0EUAFdBMCbpBZtrLe58u-82-7aMRxIPA2mibdiPd3ElX9wGJP_egFbTDMMI8SihkhLsS9usp22lQNoKQBLciLE1JI0iicYS3YqBQqPLq2DuxUPO3wAKtMKBeH4_HH92HLdcLHp3-ipme88xpsO28JfiNblcfHI4H_s8Ened22Ue_3MoPuazdfNWLleLtpkuy6QAz2VQgXVg63RNiAigbW0mxk9sTcpQoOhZde56GWN05GXsvPKAaCAGZyQOxdNfNzHz5tSnvesvG7JWo67xF-SgQFI</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Ding, Minjie</creator><creator>Tong, Weiqin</creator><creator>Ding, Xuehai</creator><creator>Zhi, Xiaoli</creator><creator>Wang, Xiao</creator><creator>Zhang, Guoqing</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201911</creationdate><title>Knowledge Graph Embedding by Bias Vectors</title><author>Ding, Minjie ; Tong, Weiqin ; Ding, Xuehai ; Zhi, Xiaoli ; Wang, Xiao ; Zhang, Guoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-c2ce5ce9a54833300594767b6948278c8dbe2fa180ddda8b1dfb2b03370dca713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>knowledge completion</topic><topic>knowledge embedding</topic><topic>link prediction</topic><topic>triplets</topic><toplevel>online_resources</toplevel><creatorcontrib>Ding, Minjie</creatorcontrib><creatorcontrib>Tong, Weiqin</creatorcontrib><creatorcontrib>Ding, Xuehai</creatorcontrib><creatorcontrib>Zhi, Xiaoli</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Zhang, Guoqing</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ding, Minjie</au><au>Tong, Weiqin</au><au>Ding, Xuehai</au><au>Zhi, Xiaoli</au><au>Wang, Xiao</au><au>Zhang, Guoqing</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Knowledge Graph Embedding by Bias Vectors</atitle><btitle>2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)</btitle><stitle>TAI</stitle><date>2019-11</date><risdate>2019</risdate><spage>1296</spage><epage>1302</epage><pages>1296-1302</pages><eissn>2375-0197</eissn><eisbn>9781728137988</eisbn><eisbn>1728137985</eisbn><abstract>Knowledge graph completion can predict the possible relation between entities. Previous work such as TransE, TransR, TransPES and GTrans embed knowledge graph into vector space and treat relations between entities as translations. In most cases, the more complex the algorithm is, the better the result will be, but it is difficult to apply to large-scale knowledge graphs. Therefore, we propose TransB, an efficient model, in this paper. We avoid the complex matrix or vector multiplication operation. Meanwhile, we make the representation of entities not too simple, which can satisfy the operation in the case of non-one-to-one relation. We use link prediction to evaluate the performance of our model in the experiment. The experimental results show that our model is valid and has low time complexity.</abstract><pub>IEEE</pub><doi>10.1109/ICTAI.2019.00180</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2375-0197 |
ispartof | 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019, p.1296-1302 |
issn | 2375-0197 |
language | eng |
recordid | cdi_ieee_primary_8995354 |
source | IEEE Xplore All Conference Series |
subjects | knowledge completion knowledge embedding link prediction triplets |
title | Knowledge Graph Embedding by Bias Vectors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Knowledge%20Graph%20Embedding%20by%20Bias%20Vectors&rft.btitle=2019%20IEEE%2031st%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence%20(ICTAI)&rft.au=Ding,%20Minjie&rft.date=2019-11&rft.spage=1296&rft.epage=1302&rft.pages=1296-1302&rft.eissn=2375-0197&rft_id=info:doi/10.1109/ICTAI.2019.00180&rft.eisbn=9781728137988&rft.eisbn_list=1728137985&rft_dat=%3Cieee_CHZPO%3E8995354%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-c2ce5ce9a54833300594767b6948278c8dbe2fa180ddda8b1dfb2b03370dca713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8995354&rfr_iscdi=true |