Loading…

Sensory Substitution of Vision: A Systematic Mapping and a Deep Learning Object Detection Proposition

Since 1946 methods for sensory substitution of vision has been studied; however, half a century after the beginning of this line of research, this keep been a massive problem in a world with about 50.6 million people with irreversible blindness. This research presents how self-help devices for visua...

Full description

Saved in:
Bibliographic Details
Main Authors: Pinheiro Lima Neto, Elze, Martins da Costa, Ronaldo, Silva Alves Fernandes, Deborah, Alphonsus Alves de Melo Nunes Soares, Fabrizzio
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1819
container_issue
container_start_page 1815
container_title
container_volume
creator Pinheiro Lima Neto, Elze
Martins da Costa, Ronaldo
Silva Alves Fernandes, Deborah
Alphonsus Alves de Melo Nunes Soares, Fabrizzio
description Since 1946 methods for sensory substitution of vision has been studied; however, half a century after the beginning of this line of research, this keep been a massive problem in a world with about 50.6 million people with irreversible blindness. This research presents how self-help devices for visually impaired are approach in recent years and proposes a new approach based on object recognition with deep learning. Through it, it is possible to perceive the trends in this line of research, how devices obtain information from the environment, how they interact with users, and other aspects - pointing essential factors to all those who research or wish to study this area.
doi_str_mv 10.1109/ICTAI.2019.00274
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8995436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8995436</ieee_id><sourcerecordid>8995436</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-b964ac7460b3f3ae5b10581ea114998de037a92c45d1687a1c1fed6c14424df73</originalsourceid><addsrcrecordid>eNotjM1KxDAURqMgOI6zF9zkBVpzk7RJ3JX6V6iM0NHtkLa3ksFpS5NZzNvboqvvcDh8hNwBiwGYeSjyXVbEnIGJGeNKXpCNURoU1yCU0fqSrLhQSTQH6prceH-YM5ZwsSJYYe-H6UyrU-2DC6fghp4OHf1yfqZHmtHq7AMebXANfbfj6PpvavuWWvqEONIS7dQvblsfsAmzDPMsJx_TMA7eLXxLrjr743Hzv2vy-fK8y9-icvta5FkZOc5EiGqTStsombJadMJiUgNLNKAFkMboFplQ1vBGJi2kWllooMM2bUBKLttOiTW5__t1iLgfJ3e003mvjUmkSMUv8idWiA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sensory Substitution of Vision: A Systematic Mapping and a Deep Learning Object Detection Proposition</title><source>IEEE Xplore All Conference Series</source><creator>Pinheiro Lima Neto, Elze ; Martins da Costa, Ronaldo ; Silva Alves Fernandes, Deborah ; Alphonsus Alves de Melo Nunes Soares, Fabrizzio</creator><creatorcontrib>Pinheiro Lima Neto, Elze ; Martins da Costa, Ronaldo ; Silva Alves Fernandes, Deborah ; Alphonsus Alves de Melo Nunes Soares, Fabrizzio</creatorcontrib><description>Since 1946 methods for sensory substitution of vision has been studied; however, half a century after the beginning of this line of research, this keep been a massive problem in a world with about 50.6 million people with irreversible blindness. This research presents how self-help devices for visually impaired are approach in recent years and proposes a new approach based on object recognition with deep learning. Through it, it is possible to perceive the trends in this line of research, how devices obtain information from the environment, how they interact with users, and other aspects - pointing essential factors to all those who research or wish to study this area.</description><identifier>EISSN: 2375-0197</identifier><identifier>EISBN: 9781728137988</identifier><identifier>EISBN: 1728137985</identifier><identifier>DOI: 10.1109/ICTAI.2019.00274</identifier><language>eng</language><publisher>IEEE</publisher><subject>Assistive Technologies ; Computer Vision ; Deep Learning ; Mobile ; Object Detection ; Tensor Flow Lite ; Vision Substitution ; Visual Impairment</subject><ispartof>2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019, p.1815-1819</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8995436$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8995436$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pinheiro Lima Neto, Elze</creatorcontrib><creatorcontrib>Martins da Costa, Ronaldo</creatorcontrib><creatorcontrib>Silva Alves Fernandes, Deborah</creatorcontrib><creatorcontrib>Alphonsus Alves de Melo Nunes Soares, Fabrizzio</creatorcontrib><title>Sensory Substitution of Vision: A Systematic Mapping and a Deep Learning Object Detection Proposition</title><title>2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)</title><addtitle>TAI</addtitle><description>Since 1946 methods for sensory substitution of vision has been studied; however, half a century after the beginning of this line of research, this keep been a massive problem in a world with about 50.6 million people with irreversible blindness. This research presents how self-help devices for visually impaired are approach in recent years and proposes a new approach based on object recognition with deep learning. Through it, it is possible to perceive the trends in this line of research, how devices obtain information from the environment, how they interact with users, and other aspects - pointing essential factors to all those who research or wish to study this area.</description><subject>Assistive Technologies</subject><subject>Computer Vision</subject><subject>Deep Learning</subject><subject>Mobile</subject><subject>Object Detection</subject><subject>Tensor Flow Lite</subject><subject>Vision Substitution</subject><subject>Visual Impairment</subject><issn>2375-0197</issn><isbn>9781728137988</isbn><isbn>1728137985</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM1KxDAURqMgOI6zF9zkBVpzk7RJ3JX6V6iM0NHtkLa3ksFpS5NZzNvboqvvcDh8hNwBiwGYeSjyXVbEnIGJGeNKXpCNURoU1yCU0fqSrLhQSTQH6prceH-YM5ZwsSJYYe-H6UyrU-2DC6fghp4OHf1yfqZHmtHq7AMebXANfbfj6PpvavuWWvqEONIS7dQvblsfsAmzDPMsJx_TMA7eLXxLrjr743Hzv2vy-fK8y9-icvta5FkZOc5EiGqTStsombJadMJiUgNLNKAFkMboFplQ1vBGJi2kWllooMM2bUBKLttOiTW5__t1iLgfJ3e003mvjUmkSMUv8idWiA</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Pinheiro Lima Neto, Elze</creator><creator>Martins da Costa, Ronaldo</creator><creator>Silva Alves Fernandes, Deborah</creator><creator>Alphonsus Alves de Melo Nunes Soares, Fabrizzio</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201911</creationdate><title>Sensory Substitution of Vision: A Systematic Mapping and a Deep Learning Object Detection Proposition</title><author>Pinheiro Lima Neto, Elze ; Martins da Costa, Ronaldo ; Silva Alves Fernandes, Deborah ; Alphonsus Alves de Melo Nunes Soares, Fabrizzio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-b964ac7460b3f3ae5b10581ea114998de037a92c45d1687a1c1fed6c14424df73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assistive Technologies</topic><topic>Computer Vision</topic><topic>Deep Learning</topic><topic>Mobile</topic><topic>Object Detection</topic><topic>Tensor Flow Lite</topic><topic>Vision Substitution</topic><topic>Visual Impairment</topic><toplevel>online_resources</toplevel><creatorcontrib>Pinheiro Lima Neto, Elze</creatorcontrib><creatorcontrib>Martins da Costa, Ronaldo</creatorcontrib><creatorcontrib>Silva Alves Fernandes, Deborah</creatorcontrib><creatorcontrib>Alphonsus Alves de Melo Nunes Soares, Fabrizzio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pinheiro Lima Neto, Elze</au><au>Martins da Costa, Ronaldo</au><au>Silva Alves Fernandes, Deborah</au><au>Alphonsus Alves de Melo Nunes Soares, Fabrizzio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sensory Substitution of Vision: A Systematic Mapping and a Deep Learning Object Detection Proposition</atitle><btitle>2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)</btitle><stitle>TAI</stitle><date>2019-11</date><risdate>2019</risdate><spage>1815</spage><epage>1819</epage><pages>1815-1819</pages><eissn>2375-0197</eissn><eisbn>9781728137988</eisbn><eisbn>1728137985</eisbn><abstract>Since 1946 methods for sensory substitution of vision has been studied; however, half a century after the beginning of this line of research, this keep been a massive problem in a world with about 50.6 million people with irreversible blindness. This research presents how self-help devices for visually impaired are approach in recent years and proposes a new approach based on object recognition with deep learning. Through it, it is possible to perceive the trends in this line of research, how devices obtain information from the environment, how they interact with users, and other aspects - pointing essential factors to all those who research or wish to study this area.</abstract><pub>IEEE</pub><doi>10.1109/ICTAI.2019.00274</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2375-0197
ispartof 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019, p.1815-1819
issn 2375-0197
language eng
recordid cdi_ieee_primary_8995436
source IEEE Xplore All Conference Series
subjects Assistive Technologies
Computer Vision
Deep Learning
Mobile
Object Detection
Tensor Flow Lite
Vision Substitution
Visual Impairment
title Sensory Substitution of Vision: A Systematic Mapping and a Deep Learning Object Detection Proposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sensory%20Substitution%20of%20Vision:%20A%20Systematic%20Mapping%20and%20a%20Deep%20Learning%20Object%20Detection%20Proposition&rft.btitle=2019%20IEEE%2031st%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence%20(ICTAI)&rft.au=Pinheiro%20Lima%20Neto,%20Elze&rft.date=2019-11&rft.spage=1815&rft.epage=1819&rft.pages=1815-1819&rft.eissn=2375-0197&rft_id=info:doi/10.1109/ICTAI.2019.00274&rft.eisbn=9781728137988&rft.eisbn_list=1728137985&rft_dat=%3Cieee_CHZPO%3E8995436%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-b964ac7460b3f3ae5b10581ea114998de037a92c45d1687a1c1fed6c14424df73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8995436&rfr_iscdi=true