Loading…
Sensory Substitution of Vision: A Systematic Mapping and a Deep Learning Object Detection Proposition
Since 1946 methods for sensory substitution of vision has been studied; however, half a century after the beginning of this line of research, this keep been a massive problem in a world with about 50.6 million people with irreversible blindness. This research presents how self-help devices for visua...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1819 |
container_issue | |
container_start_page | 1815 |
container_title | |
container_volume | |
creator | Pinheiro Lima Neto, Elze Martins da Costa, Ronaldo Silva Alves Fernandes, Deborah Alphonsus Alves de Melo Nunes Soares, Fabrizzio |
description | Since 1946 methods for sensory substitution of vision has been studied; however, half a century after the beginning of this line of research, this keep been a massive problem in a world with about 50.6 million people with irreversible blindness. This research presents how self-help devices for visually impaired are approach in recent years and proposes a new approach based on object recognition with deep learning. Through it, it is possible to perceive the trends in this line of research, how devices obtain information from the environment, how they interact with users, and other aspects - pointing essential factors to all those who research or wish to study this area. |
doi_str_mv | 10.1109/ICTAI.2019.00274 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8995436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8995436</ieee_id><sourcerecordid>8995436</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-b964ac7460b3f3ae5b10581ea114998de037a92c45d1687a1c1fed6c14424df73</originalsourceid><addsrcrecordid>eNotjM1KxDAURqMgOI6zF9zkBVpzk7RJ3JX6V6iM0NHtkLa3ksFpS5NZzNvboqvvcDh8hNwBiwGYeSjyXVbEnIGJGeNKXpCNURoU1yCU0fqSrLhQSTQH6prceH-YM5ZwsSJYYe-H6UyrU-2DC6fghp4OHf1yfqZHmtHq7AMebXANfbfj6PpvavuWWvqEONIS7dQvblsfsAmzDPMsJx_TMA7eLXxLrjr743Hzv2vy-fK8y9-icvta5FkZOc5EiGqTStsombJadMJiUgNLNKAFkMboFplQ1vBGJi2kWllooMM2bUBKLttOiTW5__t1iLgfJ3e003mvjUmkSMUv8idWiA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sensory Substitution of Vision: A Systematic Mapping and a Deep Learning Object Detection Proposition</title><source>IEEE Xplore All Conference Series</source><creator>Pinheiro Lima Neto, Elze ; Martins da Costa, Ronaldo ; Silva Alves Fernandes, Deborah ; Alphonsus Alves de Melo Nunes Soares, Fabrizzio</creator><creatorcontrib>Pinheiro Lima Neto, Elze ; Martins da Costa, Ronaldo ; Silva Alves Fernandes, Deborah ; Alphonsus Alves de Melo Nunes Soares, Fabrizzio</creatorcontrib><description>Since 1946 methods for sensory substitution of vision has been studied; however, half a century after the beginning of this line of research, this keep been a massive problem in a world with about 50.6 million people with irreversible blindness. This research presents how self-help devices for visually impaired are approach in recent years and proposes a new approach based on object recognition with deep learning. Through it, it is possible to perceive the trends in this line of research, how devices obtain information from the environment, how they interact with users, and other aspects - pointing essential factors to all those who research or wish to study this area.</description><identifier>EISSN: 2375-0197</identifier><identifier>EISBN: 9781728137988</identifier><identifier>EISBN: 1728137985</identifier><identifier>DOI: 10.1109/ICTAI.2019.00274</identifier><language>eng</language><publisher>IEEE</publisher><subject>Assistive Technologies ; Computer Vision ; Deep Learning ; Mobile ; Object Detection ; Tensor Flow Lite ; Vision Substitution ; Visual Impairment</subject><ispartof>2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019, p.1815-1819</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8995436$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8995436$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pinheiro Lima Neto, Elze</creatorcontrib><creatorcontrib>Martins da Costa, Ronaldo</creatorcontrib><creatorcontrib>Silva Alves Fernandes, Deborah</creatorcontrib><creatorcontrib>Alphonsus Alves de Melo Nunes Soares, Fabrizzio</creatorcontrib><title>Sensory Substitution of Vision: A Systematic Mapping and a Deep Learning Object Detection Proposition</title><title>2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)</title><addtitle>TAI</addtitle><description>Since 1946 methods for sensory substitution of vision has been studied; however, half a century after the beginning of this line of research, this keep been a massive problem in a world with about 50.6 million people with irreversible blindness. This research presents how self-help devices for visually impaired are approach in recent years and proposes a new approach based on object recognition with deep learning. Through it, it is possible to perceive the trends in this line of research, how devices obtain information from the environment, how they interact with users, and other aspects - pointing essential factors to all those who research or wish to study this area.</description><subject>Assistive Technologies</subject><subject>Computer Vision</subject><subject>Deep Learning</subject><subject>Mobile</subject><subject>Object Detection</subject><subject>Tensor Flow Lite</subject><subject>Vision Substitution</subject><subject>Visual Impairment</subject><issn>2375-0197</issn><isbn>9781728137988</isbn><isbn>1728137985</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM1KxDAURqMgOI6zF9zkBVpzk7RJ3JX6V6iM0NHtkLa3ksFpS5NZzNvboqvvcDh8hNwBiwGYeSjyXVbEnIGJGeNKXpCNURoU1yCU0fqSrLhQSTQH6prceH-YM5ZwsSJYYe-H6UyrU-2DC6fghp4OHf1yfqZHmtHq7AMebXANfbfj6PpvavuWWvqEONIS7dQvblsfsAmzDPMsJx_TMA7eLXxLrjr743Hzv2vy-fK8y9-icvta5FkZOc5EiGqTStsombJadMJiUgNLNKAFkMboFplQ1vBGJi2kWllooMM2bUBKLttOiTW5__t1iLgfJ3e003mvjUmkSMUv8idWiA</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Pinheiro Lima Neto, Elze</creator><creator>Martins da Costa, Ronaldo</creator><creator>Silva Alves Fernandes, Deborah</creator><creator>Alphonsus Alves de Melo Nunes Soares, Fabrizzio</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201911</creationdate><title>Sensory Substitution of Vision: A Systematic Mapping and a Deep Learning Object Detection Proposition</title><author>Pinheiro Lima Neto, Elze ; Martins da Costa, Ronaldo ; Silva Alves Fernandes, Deborah ; Alphonsus Alves de Melo Nunes Soares, Fabrizzio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-b964ac7460b3f3ae5b10581ea114998de037a92c45d1687a1c1fed6c14424df73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assistive Technologies</topic><topic>Computer Vision</topic><topic>Deep Learning</topic><topic>Mobile</topic><topic>Object Detection</topic><topic>Tensor Flow Lite</topic><topic>Vision Substitution</topic><topic>Visual Impairment</topic><toplevel>online_resources</toplevel><creatorcontrib>Pinheiro Lima Neto, Elze</creatorcontrib><creatorcontrib>Martins da Costa, Ronaldo</creatorcontrib><creatorcontrib>Silva Alves Fernandes, Deborah</creatorcontrib><creatorcontrib>Alphonsus Alves de Melo Nunes Soares, Fabrizzio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pinheiro Lima Neto, Elze</au><au>Martins da Costa, Ronaldo</au><au>Silva Alves Fernandes, Deborah</au><au>Alphonsus Alves de Melo Nunes Soares, Fabrizzio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sensory Substitution of Vision: A Systematic Mapping and a Deep Learning Object Detection Proposition</atitle><btitle>2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)</btitle><stitle>TAI</stitle><date>2019-11</date><risdate>2019</risdate><spage>1815</spage><epage>1819</epage><pages>1815-1819</pages><eissn>2375-0197</eissn><eisbn>9781728137988</eisbn><eisbn>1728137985</eisbn><abstract>Since 1946 methods for sensory substitution of vision has been studied; however, half a century after the beginning of this line of research, this keep been a massive problem in a world with about 50.6 million people with irreversible blindness. This research presents how self-help devices for visually impaired are approach in recent years and proposes a new approach based on object recognition with deep learning. Through it, it is possible to perceive the trends in this line of research, how devices obtain information from the environment, how they interact with users, and other aspects - pointing essential factors to all those who research or wish to study this area.</abstract><pub>IEEE</pub><doi>10.1109/ICTAI.2019.00274</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2375-0197 |
ispartof | 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019, p.1815-1819 |
issn | 2375-0197 |
language | eng |
recordid | cdi_ieee_primary_8995436 |
source | IEEE Xplore All Conference Series |
subjects | Assistive Technologies Computer Vision Deep Learning Mobile Object Detection Tensor Flow Lite Vision Substitution Visual Impairment |
title | Sensory Substitution of Vision: A Systematic Mapping and a Deep Learning Object Detection Proposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sensory%20Substitution%20of%20Vision:%20A%20Systematic%20Mapping%20and%20a%20Deep%20Learning%20Object%20Detection%20Proposition&rft.btitle=2019%20IEEE%2031st%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence%20(ICTAI)&rft.au=Pinheiro%20Lima%20Neto,%20Elze&rft.date=2019-11&rft.spage=1815&rft.epage=1819&rft.pages=1815-1819&rft.eissn=2375-0197&rft_id=info:doi/10.1109/ICTAI.2019.00274&rft.eisbn=9781728137988&rft.eisbn_list=1728137985&rft_dat=%3Cieee_CHZPO%3E8995436%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-b964ac7460b3f3ae5b10581ea114998de037a92c45d1687a1c1fed6c14424df73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8995436&rfr_iscdi=true |