Loading…
An Anomaly Detection Algorithm for the Power Industrial Terminal Security Monitoring
Power industrial terminal is a complex system with high reliability and security. Traditional methods for detecting data anomalies of power industrial terminal fail to fully mine the data characteristics. And it has shortcomings such as complex calculation, poor flexibility and low accuracy. In orde...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3700 |
container_issue | |
container_start_page | 3696 |
container_title | |
container_volume | |
creator | Lv, Zhining Hu, Ziheng Ning, Baifeng Sun, Yu Yan, Gangfeng Shi, Xiasheng |
description | Power industrial terminal is a complex system with high reliability and security. Traditional methods for detecting data anomalies of power industrial terminal fail to fully mine the data characteristics. And it has shortcomings such as complex calculation, poor flexibility and low accuracy. In order to solve the problem that it is difficult to predict the operational status of power industrial terminal accurately, a prediction method based on long-term memory (LSTM) neural network is proposed. Considering the variety of data reflecting the operating status of power industrial terminal, choose the ambient temperature system related to the operating status of power industrial terminal as a experiment object. Through experiments, the algorithm has higher prediction effect for the operating status of power industrial terminal. |
doi_str_mv | 10.1109/CAC48633.2019.8996440 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8996440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8996440</ieee_id><sourcerecordid>8996440</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-b3e632f89fb6eb01cb2931f5c0e46653308d09e9ecdde67d402cdcce440fc8aa3</originalsourceid><addsrcrecordid>eNotUG1LwzAYjILgnPsFIuQPtD7Jk2bJx1LfBhMF6-fRpk-3SF8kzZD9ewvu0x3H3cEdY_cCUiHAPhR5oYxGTCUImxprtVJwwW7EWhqhwCq8ZAupjUnAorlmq2n6BgCJQmUKFqzMB54PY191J_5IkVz046x0-zH4eOh5OwYeD8Q_xl8KfDM0xykGX3W8pND7YSaf5I6z98TfxsHHOTbsb9lVW3UTrc64ZF_PT2XxmmzfXzZFvk28BIxJjaRRtsa2taYahKulRdFmDkhpnSGCacCSJdc0pNeNAuka52he2DpTVbhkd_-9noh2P8H3VTjtzifgH9NPUpE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Anomaly Detection Algorithm for the Power Industrial Terminal Security Monitoring</title><source>IEEE Xplore All Conference Series</source><creator>Lv, Zhining ; Hu, Ziheng ; Ning, Baifeng ; Sun, Yu ; Yan, Gangfeng ; Shi, Xiasheng</creator><creatorcontrib>Lv, Zhining ; Hu, Ziheng ; Ning, Baifeng ; Sun, Yu ; Yan, Gangfeng ; Shi, Xiasheng</creatorcontrib><description>Power industrial terminal is a complex system with high reliability and security. Traditional methods for detecting data anomalies of power industrial terminal fail to fully mine the data characteristics. And it has shortcomings such as complex calculation, poor flexibility and low accuracy. In order to solve the problem that it is difficult to predict the operational status of power industrial terminal accurately, a prediction method based on long-term memory (LSTM) neural network is proposed. Considering the variety of data reflecting the operating status of power industrial terminal, choose the ambient temperature system related to the operating status of power industrial terminal as a experiment object. Through experiments, the algorithm has higher prediction effect for the operating status of power industrial terminal.</description><identifier>EISSN: 2688-0938</identifier><identifier>EISBN: 1728140943</identifier><identifier>EISBN: 9781728140940</identifier><identifier>DOI: 10.1109/CAC48633.2019.8996440</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anomaly detection ; Data mining ; Deep learning ; Economic indicators ; LSTM ; Power Industrial Terminal Security Monitoring</subject><ispartof>2019 Chinese Automation Congress (CAC), 2019, p.3696-3700</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8996440$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8996440$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lv, Zhining</creatorcontrib><creatorcontrib>Hu, Ziheng</creatorcontrib><creatorcontrib>Ning, Baifeng</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Yan, Gangfeng</creatorcontrib><creatorcontrib>Shi, Xiasheng</creatorcontrib><title>An Anomaly Detection Algorithm for the Power Industrial Terminal Security Monitoring</title><title>2019 Chinese Automation Congress (CAC)</title><addtitle>CAC</addtitle><description>Power industrial terminal is a complex system with high reliability and security. Traditional methods for detecting data anomalies of power industrial terminal fail to fully mine the data characteristics. And it has shortcomings such as complex calculation, poor flexibility and low accuracy. In order to solve the problem that it is difficult to predict the operational status of power industrial terminal accurately, a prediction method based on long-term memory (LSTM) neural network is proposed. Considering the variety of data reflecting the operating status of power industrial terminal, choose the ambient temperature system related to the operating status of power industrial terminal as a experiment object. Through experiments, the algorithm has higher prediction effect for the operating status of power industrial terminal.</description><subject>Anomaly detection</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Economic indicators</subject><subject>LSTM</subject><subject>Power Industrial Terminal Security Monitoring</subject><issn>2688-0938</issn><isbn>1728140943</isbn><isbn>9781728140940</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUG1LwzAYjILgnPsFIuQPtD7Jk2bJx1LfBhMF6-fRpk-3SF8kzZD9ewvu0x3H3cEdY_cCUiHAPhR5oYxGTCUImxprtVJwwW7EWhqhwCq8ZAupjUnAorlmq2n6BgCJQmUKFqzMB54PY191J_5IkVz046x0-zH4eOh5OwYeD8Q_xl8KfDM0xykGX3W8pND7YSaf5I6z98TfxsHHOTbsb9lVW3UTrc64ZF_PT2XxmmzfXzZFvk28BIxJjaRRtsa2taYahKulRdFmDkhpnSGCacCSJdc0pNeNAuka52he2DpTVbhkd_-9noh2P8H3VTjtzifgH9NPUpE</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Lv, Zhining</creator><creator>Hu, Ziheng</creator><creator>Ning, Baifeng</creator><creator>Sun, Yu</creator><creator>Yan, Gangfeng</creator><creator>Shi, Xiasheng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201911</creationdate><title>An Anomaly Detection Algorithm for the Power Industrial Terminal Security Monitoring</title><author>Lv, Zhining ; Hu, Ziheng ; Ning, Baifeng ; Sun, Yu ; Yan, Gangfeng ; Shi, Xiasheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-b3e632f89fb6eb01cb2931f5c0e46653308d09e9ecdde67d402cdcce440fc8aa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anomaly detection</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Economic indicators</topic><topic>LSTM</topic><topic>Power Industrial Terminal Security Monitoring</topic><toplevel>online_resources</toplevel><creatorcontrib>Lv, Zhining</creatorcontrib><creatorcontrib>Hu, Ziheng</creatorcontrib><creatorcontrib>Ning, Baifeng</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Yan, Gangfeng</creatorcontrib><creatorcontrib>Shi, Xiasheng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lv, Zhining</au><au>Hu, Ziheng</au><au>Ning, Baifeng</au><au>Sun, Yu</au><au>Yan, Gangfeng</au><au>Shi, Xiasheng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Anomaly Detection Algorithm for the Power Industrial Terminal Security Monitoring</atitle><btitle>2019 Chinese Automation Congress (CAC)</btitle><stitle>CAC</stitle><date>2019-11</date><risdate>2019</risdate><spage>3696</spage><epage>3700</epage><pages>3696-3700</pages><eissn>2688-0938</eissn><eisbn>1728140943</eisbn><eisbn>9781728140940</eisbn><abstract>Power industrial terminal is a complex system with high reliability and security. Traditional methods for detecting data anomalies of power industrial terminal fail to fully mine the data characteristics. And it has shortcomings such as complex calculation, poor flexibility and low accuracy. In order to solve the problem that it is difficult to predict the operational status of power industrial terminal accurately, a prediction method based on long-term memory (LSTM) neural network is proposed. Considering the variety of data reflecting the operating status of power industrial terminal, choose the ambient temperature system related to the operating status of power industrial terminal as a experiment object. Through experiments, the algorithm has higher prediction effect for the operating status of power industrial terminal.</abstract><pub>IEEE</pub><doi>10.1109/CAC48633.2019.8996440</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2688-0938 |
ispartof | 2019 Chinese Automation Congress (CAC), 2019, p.3696-3700 |
issn | 2688-0938 |
language | eng |
recordid | cdi_ieee_primary_8996440 |
source | IEEE Xplore All Conference Series |
subjects | Anomaly detection Data mining Deep learning Economic indicators LSTM Power Industrial Terminal Security Monitoring |
title | An Anomaly Detection Algorithm for the Power Industrial Terminal Security Monitoring |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Anomaly%20Detection%20Algorithm%20for%20the%20Power%20Industrial%20Terminal%20Security%20Monitoring&rft.btitle=2019%20Chinese%20Automation%20Congress%20(CAC)&rft.au=Lv,%20Zhining&rft.date=2019-11&rft.spage=3696&rft.epage=3700&rft.pages=3696-3700&rft.eissn=2688-0938&rft_id=info:doi/10.1109/CAC48633.2019.8996440&rft.eisbn=1728140943&rft.eisbn_list=9781728140940&rft_dat=%3Cieee_CHZPO%3E8996440%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-b3e632f89fb6eb01cb2931f5c0e46653308d09e9ecdde67d402cdcce440fc8aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8996440&rfr_iscdi=true |