Loading…

An Anomaly Detection Algorithm for the Power Industrial Terminal Security Monitoring

Power industrial terminal is a complex system with high reliability and security. Traditional methods for detecting data anomalies of power industrial terminal fail to fully mine the data characteristics. And it has shortcomings such as complex calculation, poor flexibility and low accuracy. In orde...

Full description

Saved in:
Bibliographic Details
Main Authors: Lv, Zhining, Hu, Ziheng, Ning, Baifeng, Sun, Yu, Yan, Gangfeng, Shi, Xiasheng
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3700
container_issue
container_start_page 3696
container_title
container_volume
creator Lv, Zhining
Hu, Ziheng
Ning, Baifeng
Sun, Yu
Yan, Gangfeng
Shi, Xiasheng
description Power industrial terminal is a complex system with high reliability and security. Traditional methods for detecting data anomalies of power industrial terminal fail to fully mine the data characteristics. And it has shortcomings such as complex calculation, poor flexibility and low accuracy. In order to solve the problem that it is difficult to predict the operational status of power industrial terminal accurately, a prediction method based on long-term memory (LSTM) neural network is proposed. Considering the variety of data reflecting the operating status of power industrial terminal, choose the ambient temperature system related to the operating status of power industrial terminal as a experiment object. Through experiments, the algorithm has higher prediction effect for the operating status of power industrial terminal.
doi_str_mv 10.1109/CAC48633.2019.8996440
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8996440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8996440</ieee_id><sourcerecordid>8996440</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-b3e632f89fb6eb01cb2931f5c0e46653308d09e9ecdde67d402cdcce440fc8aa3</originalsourceid><addsrcrecordid>eNotUG1LwzAYjILgnPsFIuQPtD7Jk2bJx1LfBhMF6-fRpk-3SF8kzZD9ewvu0x3H3cEdY_cCUiHAPhR5oYxGTCUImxprtVJwwW7EWhqhwCq8ZAupjUnAorlmq2n6BgCJQmUKFqzMB54PY191J_5IkVz046x0-zH4eOh5OwYeD8Q_xl8KfDM0xykGX3W8pND7YSaf5I6z98TfxsHHOTbsb9lVW3UTrc64ZF_PT2XxmmzfXzZFvk28BIxJjaRRtsa2taYahKulRdFmDkhpnSGCacCSJdc0pNeNAuka52he2DpTVbhkd_-9noh2P8H3VTjtzifgH9NPUpE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Anomaly Detection Algorithm for the Power Industrial Terminal Security Monitoring</title><source>IEEE Xplore All Conference Series</source><creator>Lv, Zhining ; Hu, Ziheng ; Ning, Baifeng ; Sun, Yu ; Yan, Gangfeng ; Shi, Xiasheng</creator><creatorcontrib>Lv, Zhining ; Hu, Ziheng ; Ning, Baifeng ; Sun, Yu ; Yan, Gangfeng ; Shi, Xiasheng</creatorcontrib><description>Power industrial terminal is a complex system with high reliability and security. Traditional methods for detecting data anomalies of power industrial terminal fail to fully mine the data characteristics. And it has shortcomings such as complex calculation, poor flexibility and low accuracy. In order to solve the problem that it is difficult to predict the operational status of power industrial terminal accurately, a prediction method based on long-term memory (LSTM) neural network is proposed. Considering the variety of data reflecting the operating status of power industrial terminal, choose the ambient temperature system related to the operating status of power industrial terminal as a experiment object. Through experiments, the algorithm has higher prediction effect for the operating status of power industrial terminal.</description><identifier>EISSN: 2688-0938</identifier><identifier>EISBN: 1728140943</identifier><identifier>EISBN: 9781728140940</identifier><identifier>DOI: 10.1109/CAC48633.2019.8996440</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anomaly detection ; Data mining ; Deep learning ; Economic indicators ; LSTM ; Power Industrial Terminal Security Monitoring</subject><ispartof>2019 Chinese Automation Congress (CAC), 2019, p.3696-3700</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8996440$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8996440$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lv, Zhining</creatorcontrib><creatorcontrib>Hu, Ziheng</creatorcontrib><creatorcontrib>Ning, Baifeng</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Yan, Gangfeng</creatorcontrib><creatorcontrib>Shi, Xiasheng</creatorcontrib><title>An Anomaly Detection Algorithm for the Power Industrial Terminal Security Monitoring</title><title>2019 Chinese Automation Congress (CAC)</title><addtitle>CAC</addtitle><description>Power industrial terminal is a complex system with high reliability and security. Traditional methods for detecting data anomalies of power industrial terminal fail to fully mine the data characteristics. And it has shortcomings such as complex calculation, poor flexibility and low accuracy. In order to solve the problem that it is difficult to predict the operational status of power industrial terminal accurately, a prediction method based on long-term memory (LSTM) neural network is proposed. Considering the variety of data reflecting the operating status of power industrial terminal, choose the ambient temperature system related to the operating status of power industrial terminal as a experiment object. Through experiments, the algorithm has higher prediction effect for the operating status of power industrial terminal.</description><subject>Anomaly detection</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Economic indicators</subject><subject>LSTM</subject><subject>Power Industrial Terminal Security Monitoring</subject><issn>2688-0938</issn><isbn>1728140943</isbn><isbn>9781728140940</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUG1LwzAYjILgnPsFIuQPtD7Jk2bJx1LfBhMF6-fRpk-3SF8kzZD9ewvu0x3H3cEdY_cCUiHAPhR5oYxGTCUImxprtVJwwW7EWhqhwCq8ZAupjUnAorlmq2n6BgCJQmUKFqzMB54PY191J_5IkVz046x0-zH4eOh5OwYeD8Q_xl8KfDM0xykGX3W8pND7YSaf5I6z98TfxsHHOTbsb9lVW3UTrc64ZF_PT2XxmmzfXzZFvk28BIxJjaRRtsa2taYahKulRdFmDkhpnSGCacCSJdc0pNeNAuka52he2DpTVbhkd_-9noh2P8H3VTjtzifgH9NPUpE</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Lv, Zhining</creator><creator>Hu, Ziheng</creator><creator>Ning, Baifeng</creator><creator>Sun, Yu</creator><creator>Yan, Gangfeng</creator><creator>Shi, Xiasheng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201911</creationdate><title>An Anomaly Detection Algorithm for the Power Industrial Terminal Security Monitoring</title><author>Lv, Zhining ; Hu, Ziheng ; Ning, Baifeng ; Sun, Yu ; Yan, Gangfeng ; Shi, Xiasheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-b3e632f89fb6eb01cb2931f5c0e46653308d09e9ecdde67d402cdcce440fc8aa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anomaly detection</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Economic indicators</topic><topic>LSTM</topic><topic>Power Industrial Terminal Security Monitoring</topic><toplevel>online_resources</toplevel><creatorcontrib>Lv, Zhining</creatorcontrib><creatorcontrib>Hu, Ziheng</creatorcontrib><creatorcontrib>Ning, Baifeng</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Yan, Gangfeng</creatorcontrib><creatorcontrib>Shi, Xiasheng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lv, Zhining</au><au>Hu, Ziheng</au><au>Ning, Baifeng</au><au>Sun, Yu</au><au>Yan, Gangfeng</au><au>Shi, Xiasheng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Anomaly Detection Algorithm for the Power Industrial Terminal Security Monitoring</atitle><btitle>2019 Chinese Automation Congress (CAC)</btitle><stitle>CAC</stitle><date>2019-11</date><risdate>2019</risdate><spage>3696</spage><epage>3700</epage><pages>3696-3700</pages><eissn>2688-0938</eissn><eisbn>1728140943</eisbn><eisbn>9781728140940</eisbn><abstract>Power industrial terminal is a complex system with high reliability and security. Traditional methods for detecting data anomalies of power industrial terminal fail to fully mine the data characteristics. And it has shortcomings such as complex calculation, poor flexibility and low accuracy. In order to solve the problem that it is difficult to predict the operational status of power industrial terminal accurately, a prediction method based on long-term memory (LSTM) neural network is proposed. Considering the variety of data reflecting the operating status of power industrial terminal, choose the ambient temperature system related to the operating status of power industrial terminal as a experiment object. Through experiments, the algorithm has higher prediction effect for the operating status of power industrial terminal.</abstract><pub>IEEE</pub><doi>10.1109/CAC48633.2019.8996440</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2688-0938
ispartof 2019 Chinese Automation Congress (CAC), 2019, p.3696-3700
issn 2688-0938
language eng
recordid cdi_ieee_primary_8996440
source IEEE Xplore All Conference Series
subjects Anomaly detection
Data mining
Deep learning
Economic indicators
LSTM
Power Industrial Terminal Security Monitoring
title An Anomaly Detection Algorithm for the Power Industrial Terminal Security Monitoring
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Anomaly%20Detection%20Algorithm%20for%20the%20Power%20Industrial%20Terminal%20Security%20Monitoring&rft.btitle=2019%20Chinese%20Automation%20Congress%20(CAC)&rft.au=Lv,%20Zhining&rft.date=2019-11&rft.spage=3696&rft.epage=3700&rft.pages=3696-3700&rft.eissn=2688-0938&rft_id=info:doi/10.1109/CAC48633.2019.8996440&rft.eisbn=1728140943&rft.eisbn_list=9781728140940&rft_dat=%3Cieee_CHZPO%3E8996440%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-b3e632f89fb6eb01cb2931f5c0e46653308d09e9ecdde67d402cdcce440fc8aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8996440&rfr_iscdi=true