Loading…
Infrared small target detection based on local multidirectional gradient
Aiming at the problem of low detection rate of small infrared target under complex background and heavy clutter interference, an infrared small target detection method based on local multidirectional gradient is proposed. Firstly, Laplace operator is used to sharpen the image and enhance the target....
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5683 |
container_issue | |
container_start_page | 5679 |
container_title | |
container_volume | |
creator | Qiu, Guoqing Yang, Haijing Wei, Yating Wang, Yantao Luo, Pan |
description | Aiming at the problem of low detection rate of small infrared target under complex background and heavy clutter interference, an infrared small target detection method based on local multidirectional gradient is proposed. Firstly, Laplace operator is used to sharpen the image and enhance the target. Then, the local multidirectional gradient function is redefined by the gradient direction feature analysis of the image. And it improves the anti-jamming ability for strong clutter. Finally, the real target is extracted by adaptive threshold segmentation. The experimental results show that the method can effectively improve the target detection ability under complex background and strong clutter interference. |
doi_str_mv | 10.1109/CAC48633.2019.8997030 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8997030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8997030</ieee_id><sourcerecordid>8997030</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-7940bcb58cc2919c464a0150c418f6ee004e9b5e55d8df7315486c6a37b1a6dd3</originalsourceid><addsrcrecordid>eNotj81KAzEUhaMgWGufQIR5gRnvzd8kyzKoLRTc6LpkkjslkplKJi58ewfa1TmcDw58jD0jNIhgX7ptJ40WouGAtjHWtiDghj1gyw1KsFLcshXXxtRghblnm3n-BgAuUCoJK7bbT0N2mUI1jy6lqrh8olIFKuRLPE9V7-YFLiWdvUvV-JtKDDFf6DKcsguRpvLI7gaXZtpcc82-3l4_u119-Hjfd9tDHTmIUrdWQu97ZbznFq2XWjpABV6iGTQRgCTbK1IqmDC0AtWi57UTbY9OhyDW7OnyG4no-JPj6PLf8Sou_gGNak1o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Infrared small target detection based on local multidirectional gradient</title><source>IEEE Xplore All Conference Series</source><creator>Qiu, Guoqing ; Yang, Haijing ; Wei, Yating ; Wang, Yantao ; Luo, Pan</creator><creatorcontrib>Qiu, Guoqing ; Yang, Haijing ; Wei, Yating ; Wang, Yantao ; Luo, Pan</creatorcontrib><description>Aiming at the problem of low detection rate of small infrared target under complex background and heavy clutter interference, an infrared small target detection method based on local multidirectional gradient is proposed. Firstly, Laplace operator is used to sharpen the image and enhance the target. Then, the local multidirectional gradient function is redefined by the gradient direction feature analysis of the image. And it improves the anti-jamming ability for strong clutter. Finally, the real target is extracted by adaptive threshold segmentation. The experimental results show that the method can effectively improve the target detection ability under complex background and strong clutter interference.</description><identifier>EISSN: 2688-0938</identifier><identifier>EISBN: 1728140943</identifier><identifier>EISBN: 9781728140940</identifier><identifier>DOI: 10.1109/CAC48633.2019.8997030</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clutter ; Feature extraction ; Image edge detection ; Image segmentation ; Infrared small target ; Local multidirectional gradient ; Object detection ; Sea level ; Target detection</subject><ispartof>2019 Chinese Automation Congress (CAC), 2019, p.5679-5683</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8997030$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8997030$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qiu, Guoqing</creatorcontrib><creatorcontrib>Yang, Haijing</creatorcontrib><creatorcontrib>Wei, Yating</creatorcontrib><creatorcontrib>Wang, Yantao</creatorcontrib><creatorcontrib>Luo, Pan</creatorcontrib><title>Infrared small target detection based on local multidirectional gradient</title><title>2019 Chinese Automation Congress (CAC)</title><addtitle>CAC</addtitle><description>Aiming at the problem of low detection rate of small infrared target under complex background and heavy clutter interference, an infrared small target detection method based on local multidirectional gradient is proposed. Firstly, Laplace operator is used to sharpen the image and enhance the target. Then, the local multidirectional gradient function is redefined by the gradient direction feature analysis of the image. And it improves the anti-jamming ability for strong clutter. Finally, the real target is extracted by adaptive threshold segmentation. The experimental results show that the method can effectively improve the target detection ability under complex background and strong clutter interference.</description><subject>Clutter</subject><subject>Feature extraction</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Infrared small target</subject><subject>Local multidirectional gradient</subject><subject>Object detection</subject><subject>Sea level</subject><subject>Target detection</subject><issn>2688-0938</issn><isbn>1728140943</isbn><isbn>9781728140940</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEUhaMgWGufQIR5gRnvzd8kyzKoLRTc6LpkkjslkplKJi58ewfa1TmcDw58jD0jNIhgX7ptJ40WouGAtjHWtiDghj1gyw1KsFLcshXXxtRghblnm3n-BgAuUCoJK7bbT0N2mUI1jy6lqrh8olIFKuRLPE9V7-YFLiWdvUvV-JtKDDFf6DKcsguRpvLI7gaXZtpcc82-3l4_u119-Hjfd9tDHTmIUrdWQu97ZbznFq2XWjpABV6iGTQRgCTbK1IqmDC0AtWi57UTbY9OhyDW7OnyG4no-JPj6PLf8Sou_gGNak1o</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Qiu, Guoqing</creator><creator>Yang, Haijing</creator><creator>Wei, Yating</creator><creator>Wang, Yantao</creator><creator>Luo, Pan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201911</creationdate><title>Infrared small target detection based on local multidirectional gradient</title><author>Qiu, Guoqing ; Yang, Haijing ; Wei, Yating ; Wang, Yantao ; Luo, Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-7940bcb58cc2919c464a0150c418f6ee004e9b5e55d8df7315486c6a37b1a6dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Clutter</topic><topic>Feature extraction</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Infrared small target</topic><topic>Local multidirectional gradient</topic><topic>Object detection</topic><topic>Sea level</topic><topic>Target detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Guoqing</creatorcontrib><creatorcontrib>Yang, Haijing</creatorcontrib><creatorcontrib>Wei, Yating</creatorcontrib><creatorcontrib>Wang, Yantao</creatorcontrib><creatorcontrib>Luo, Pan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiu, Guoqing</au><au>Yang, Haijing</au><au>Wei, Yating</au><au>Wang, Yantao</au><au>Luo, Pan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Infrared small target detection based on local multidirectional gradient</atitle><btitle>2019 Chinese Automation Congress (CAC)</btitle><stitle>CAC</stitle><date>2019-11</date><risdate>2019</risdate><spage>5679</spage><epage>5683</epage><pages>5679-5683</pages><eissn>2688-0938</eissn><eisbn>1728140943</eisbn><eisbn>9781728140940</eisbn><abstract>Aiming at the problem of low detection rate of small infrared target under complex background and heavy clutter interference, an infrared small target detection method based on local multidirectional gradient is proposed. Firstly, Laplace operator is used to sharpen the image and enhance the target. Then, the local multidirectional gradient function is redefined by the gradient direction feature analysis of the image. And it improves the anti-jamming ability for strong clutter. Finally, the real target is extracted by adaptive threshold segmentation. The experimental results show that the method can effectively improve the target detection ability under complex background and strong clutter interference.</abstract><pub>IEEE</pub><doi>10.1109/CAC48633.2019.8997030</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2688-0938 |
ispartof | 2019 Chinese Automation Congress (CAC), 2019, p.5679-5683 |
issn | 2688-0938 |
language | eng |
recordid | cdi_ieee_primary_8997030 |
source | IEEE Xplore All Conference Series |
subjects | Clutter Feature extraction Image edge detection Image segmentation Infrared small target Local multidirectional gradient Object detection Sea level Target detection |
title | Infrared small target detection based on local multidirectional gradient |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Infrared%20small%20target%20detection%20based%20on%20local%20multidirectional%20gradient&rft.btitle=2019%20Chinese%20Automation%20Congress%20(CAC)&rft.au=Qiu,%20Guoqing&rft.date=2019-11&rft.spage=5679&rft.epage=5683&rft.pages=5679-5683&rft.eissn=2688-0938&rft_id=info:doi/10.1109/CAC48633.2019.8997030&rft.eisbn=1728140943&rft.eisbn_list=9781728140940&rft_dat=%3Cieee_CHZPO%3E8997030%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-7940bcb58cc2919c464a0150c418f6ee004e9b5e55d8df7315486c6a37b1a6dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8997030&rfr_iscdi=true |