Loading…
Deep Reinforcement Learning Approach for Capacitated Supply Chain optimization under Demand Uncertainty
With the global trade competition becoming further intensified, Supply Chain Management (SCM) technology has become critical to maintain competitive advantages for enterprises. However, the economic integration and increased market uncertainty have brought great challenges to SCM. In this paper, two...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c255t-b558849680210815de5c341e42423830bb65281161e8eefce4d170c8f27bd5523 |
---|---|
cites | |
container_end_page | 3517 |
container_issue | |
container_start_page | 3512 |
container_title | |
container_volume | |
creator | Peng, Zedong Zhang, Yi Feng, Yiping Zhang, Tuchao Wu, Zhengguang Su, Hongye |
description | With the global trade competition becoming further intensified, Supply Chain Management (SCM) technology has become critical to maintain competitive advantages for enterprises. However, the economic integration and increased market uncertainty have brought great challenges to SCM. In this paper, two Deep Reinforcement Learning (DRL) based methods are proposed to solve multi-period capacitated supply chain optimization problem under demand uncertainty. The capacity constraints are satisfied from both modelling perspective and DRL algorithm perspective. Both continuous action space and discrete action space are considered. The performance of the methods is analyzed through the simulation of three different cases. Compared to the baseline of (r, Q) policy, the proposed methods show promising results for the supply chain optimization problem. |
doi_str_mv | 10.1109/CAC48633.2019.8997498 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8997498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8997498</ieee_id><sourcerecordid>8997498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-b558849680210815de5c341e42423830bb65281161e8eefce4d170c8f27bd5523</originalsourceid><addsrcrecordid>eNotkMtqwzAURNVCoWmaLygF_YBTPe2rpXH6gkChbdZBlq8TlVgWirJwv76BZjWLOQycIeSRsyXnzDw1daOglHIpGDdLMKZSBq7IHa8EcMWMktdkJkqAghkJt2RxPP4wxoTkSis2I7sVYqSf6EM_JocDhkzXaFPwYUfrGNNo3Z6eO9rYaJ3PNmNHv04xHiba7K0PdIzZD_7XZj8GegodJrrCwYaOboLDlM9Mnu7JTW8PR1xcck42L8_fzVux_nh9b-p14YTWuWi1BlCmBCY4A6471E4qjkooIUGyti31WYyXHAGxd6g6XjEHvajaTmsh5-Thf9cj4jYmP9g0bS-_yD_sR1f7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep Reinforcement Learning Approach for Capacitated Supply Chain optimization under Demand Uncertainty</title><source>IEEE Xplore All Conference Series</source><creator>Peng, Zedong ; Zhang, Yi ; Feng, Yiping ; Zhang, Tuchao ; Wu, Zhengguang ; Su, Hongye</creator><creatorcontrib>Peng, Zedong ; Zhang, Yi ; Feng, Yiping ; Zhang, Tuchao ; Wu, Zhengguang ; Su, Hongye</creatorcontrib><description>With the global trade competition becoming further intensified, Supply Chain Management (SCM) technology has become critical to maintain competitive advantages for enterprises. However, the economic integration and increased market uncertainty have brought great challenges to SCM. In this paper, two Deep Reinforcement Learning (DRL) based methods are proposed to solve multi-period capacitated supply chain optimization problem under demand uncertainty. The capacity constraints are satisfied from both modelling perspective and DRL algorithm perspective. Both continuous action space and discrete action space are considered. The performance of the methods is analyzed through the simulation of three different cases. Compared to the baseline of (r, Q) policy, the proposed methods show promising results for the supply chain optimization problem.</description><identifier>EISSN: 2688-0938</identifier><identifier>EISBN: 1728140943</identifier><identifier>EISBN: 9781728140940</identifier><identifier>DOI: 10.1109/CAC48633.2019.8997498</identifier><language>eng</language><publisher>IEEE</publisher><subject>deep reinforcement learning ; demand uncertainty ; Dynamic scheduling ; Machine learning ; Mathematical model ; Optimization ; supply chain optimization ; Supply chains ; Uncertainty ; vanilla policy gradient</subject><ispartof>2019 Chinese Automation Congress (CAC), 2019, p.3512-3517</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-b558849680210815de5c341e42423830bb65281161e8eefce4d170c8f27bd5523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8997498$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8997498$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peng, Zedong</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Feng, Yiping</creatorcontrib><creatorcontrib>Zhang, Tuchao</creatorcontrib><creatorcontrib>Wu, Zhengguang</creatorcontrib><creatorcontrib>Su, Hongye</creatorcontrib><title>Deep Reinforcement Learning Approach for Capacitated Supply Chain optimization under Demand Uncertainty</title><title>2019 Chinese Automation Congress (CAC)</title><addtitle>CAC</addtitle><description>With the global trade competition becoming further intensified, Supply Chain Management (SCM) technology has become critical to maintain competitive advantages for enterprises. However, the economic integration and increased market uncertainty have brought great challenges to SCM. In this paper, two Deep Reinforcement Learning (DRL) based methods are proposed to solve multi-period capacitated supply chain optimization problem under demand uncertainty. The capacity constraints are satisfied from both modelling perspective and DRL algorithm perspective. Both continuous action space and discrete action space are considered. The performance of the methods is analyzed through the simulation of three different cases. Compared to the baseline of (r, Q) policy, the proposed methods show promising results for the supply chain optimization problem.</description><subject>deep reinforcement learning</subject><subject>demand uncertainty</subject><subject>Dynamic scheduling</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>supply chain optimization</subject><subject>Supply chains</subject><subject>Uncertainty</subject><subject>vanilla policy gradient</subject><issn>2688-0938</issn><isbn>1728140943</isbn><isbn>9781728140940</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtqwzAURNVCoWmaLygF_YBTPe2rpXH6gkChbdZBlq8TlVgWirJwv76BZjWLOQycIeSRsyXnzDw1daOglHIpGDdLMKZSBq7IHa8EcMWMktdkJkqAghkJt2RxPP4wxoTkSis2I7sVYqSf6EM_JocDhkzXaFPwYUfrGNNo3Z6eO9rYaJ3PNmNHv04xHiba7K0PdIzZD_7XZj8GegodJrrCwYaOboLDlM9Mnu7JTW8PR1xcck42L8_fzVux_nh9b-p14YTWuWi1BlCmBCY4A6471E4qjkooIUGyti31WYyXHAGxd6g6XjEHvajaTmsh5-Thf9cj4jYmP9g0bS-_yD_sR1f7</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Peng, Zedong</creator><creator>Zhang, Yi</creator><creator>Feng, Yiping</creator><creator>Zhang, Tuchao</creator><creator>Wu, Zhengguang</creator><creator>Su, Hongye</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201911</creationdate><title>Deep Reinforcement Learning Approach for Capacitated Supply Chain optimization under Demand Uncertainty</title><author>Peng, Zedong ; Zhang, Yi ; Feng, Yiping ; Zhang, Tuchao ; Wu, Zhengguang ; Su, Hongye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-b558849680210815de5c341e42423830bb65281161e8eefce4d170c8f27bd5523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>deep reinforcement learning</topic><topic>demand uncertainty</topic><topic>Dynamic scheduling</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>supply chain optimization</topic><topic>Supply chains</topic><topic>Uncertainty</topic><topic>vanilla policy gradient</topic><toplevel>online_resources</toplevel><creatorcontrib>Peng, Zedong</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Feng, Yiping</creatorcontrib><creatorcontrib>Zhang, Tuchao</creatorcontrib><creatorcontrib>Wu, Zhengguang</creatorcontrib><creatorcontrib>Su, Hongye</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Zedong</au><au>Zhang, Yi</au><au>Feng, Yiping</au><au>Zhang, Tuchao</au><au>Wu, Zhengguang</au><au>Su, Hongye</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep Reinforcement Learning Approach for Capacitated Supply Chain optimization under Demand Uncertainty</atitle><btitle>2019 Chinese Automation Congress (CAC)</btitle><stitle>CAC</stitle><date>2019-11</date><risdate>2019</risdate><spage>3512</spage><epage>3517</epage><pages>3512-3517</pages><eissn>2688-0938</eissn><eisbn>1728140943</eisbn><eisbn>9781728140940</eisbn><abstract>With the global trade competition becoming further intensified, Supply Chain Management (SCM) technology has become critical to maintain competitive advantages for enterprises. However, the economic integration and increased market uncertainty have brought great challenges to SCM. In this paper, two Deep Reinforcement Learning (DRL) based methods are proposed to solve multi-period capacitated supply chain optimization problem under demand uncertainty. The capacity constraints are satisfied from both modelling perspective and DRL algorithm perspective. Both continuous action space and discrete action space are considered. The performance of the methods is analyzed through the simulation of three different cases. Compared to the baseline of (r, Q) policy, the proposed methods show promising results for the supply chain optimization problem.</abstract><pub>IEEE</pub><doi>10.1109/CAC48633.2019.8997498</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2688-0938 |
ispartof | 2019 Chinese Automation Congress (CAC), 2019, p.3512-3517 |
issn | 2688-0938 |
language | eng |
recordid | cdi_ieee_primary_8997498 |
source | IEEE Xplore All Conference Series |
subjects | deep reinforcement learning demand uncertainty Dynamic scheduling Machine learning Mathematical model Optimization supply chain optimization Supply chains Uncertainty vanilla policy gradient |
title | Deep Reinforcement Learning Approach for Capacitated Supply Chain optimization under Demand Uncertainty |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20Reinforcement%20Learning%20Approach%20for%20Capacitated%20Supply%20Chain%20optimization%20under%20Demand%20Uncertainty&rft.btitle=2019%20Chinese%20Automation%20Congress%20(CAC)&rft.au=Peng,%20Zedong&rft.date=2019-11&rft.spage=3512&rft.epage=3517&rft.pages=3512-3517&rft.eissn=2688-0938&rft_id=info:doi/10.1109/CAC48633.2019.8997498&rft.eisbn=1728140943&rft.eisbn_list=9781728140940&rft_dat=%3Cieee_CHZPO%3E8997498%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-b558849680210815de5c341e42423830bb65281161e8eefce4d170c8f27bd5523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8997498&rfr_iscdi=true |