Loading…

Deep Residual Networks With Adaptively Parametric Rectifier Linear Units for Fault Diagnosis

Vibration signals under the same health state often have large differences due to changes in operating conditions. Likewise, the differences among vibration signals under different health states can be small under some operating conditions. Traditional deep learning methods apply fixed nonlinear tra...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2021-03, Vol.68 (3), p.2587-2597
Main Authors: Zhao, Minghang, Zhong, Shisheng, Fu, Xuyun, Tang, Baoping, Dong, Shaojiang, Pecht, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-1bc37d4ce619133181ebc15bbe230e14d25eae4550823d621a51f0f33fe934ac3
cites cdi_FETCH-LOGICAL-c291t-1bc37d4ce619133181ebc15bbe230e14d25eae4550823d621a51f0f33fe934ac3
container_end_page 2597
container_issue 3
container_start_page 2587
container_title IEEE transactions on industrial electronics (1982)
container_volume 68
creator Zhao, Minghang
Zhong, Shisheng
Fu, Xuyun
Tang, Baoping
Dong, Shaojiang
Pecht, Michael
description Vibration signals under the same health state often have large differences due to changes in operating conditions. Likewise, the differences among vibration signals under different health states can be small under some operating conditions. Traditional deep learning methods apply fixed nonlinear transformations to all the input signals, which have a negative impact on the discriminative feature learning ability, i.e., projecting the intraclass signals into the same region and the interclass signals into distant regions. Aiming at this issue, this article develops a new activation function, i.e., adaptively parametric rectifier linear units, and inserts the activation function into deep residual networks to improve the feature learning ability, so that each input signal is trained to have its own set of nonlinear transformations. To be specific, a subnetwork is inserted as an embedded module to learn slopes to be used in the nonlinear transformation. The slopes are dependent on the input signal, and thereby the developed method has more flexible nonlinear transformations than the traditional deep learning methods. Finally, the improved performance of the developed method in learning discriminative features has been validated through fault diagnosis applications.
doi_str_mv 10.1109/TIE.2020.2972458
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8998530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8998530</ieee_id><sourcerecordid>2465436639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1bc37d4ce619133181ebc15bbe230e14d25eae4550823d621a51f0f33fe934ac3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFb3gpsB16lz55FklqUPLRQVaXEjhElyo1PTpM5MlP57UyquzuY758BHyDWwEQDTd6vFbMQZZyOuEy5VekIGoFQSaS3TUzJgPEkjxmR8Ti683zAGUoEakLcp4o6-oLdlZ2r6iOGndZ-evtrwQcel2QX7jfWePhtnthicLXq4CLay6OjSNmgcXTc2eFq1js5NVwc6tea9ab31l-SsMrXHq78ckvV8tpo8RMun-8VkvIwKriFEkBciKWWBMWgQAlLAvACV58gFQ5AlV2hQKsVSLsqYg1FQsUqICrWQphBDcnvc3bn2q0Mfsk3buaa_zLiMlRRxLHRPsSNVuNZ7h1W2c3Zr3D4Dlh0cZr3D7OAw-3PYV26OFYuI_3iqdaoEE78DKm0N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465436639</pqid></control><display><type>article</type><title>Deep Residual Networks With Adaptively Parametric Rectifier Linear Units for Fault Diagnosis</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhao, Minghang ; Zhong, Shisheng ; Fu, Xuyun ; Tang, Baoping ; Dong, Shaojiang ; Pecht, Michael</creator><creatorcontrib>Zhao, Minghang ; Zhong, Shisheng ; Fu, Xuyun ; Tang, Baoping ; Dong, Shaojiang ; Pecht, Michael</creatorcontrib><description>Vibration signals under the same health state often have large differences due to changes in operating conditions. Likewise, the differences among vibration signals under different health states can be small under some operating conditions. Traditional deep learning methods apply fixed nonlinear transformations to all the input signals, which have a negative impact on the discriminative feature learning ability, i.e., projecting the intraclass signals into the same region and the interclass signals into distant regions. Aiming at this issue, this article develops a new activation function, i.e., adaptively parametric rectifier linear units, and inserts the activation function into deep residual networks to improve the feature learning ability, so that each input signal is trained to have its own set of nonlinear transformations. To be specific, a subnetwork is inserted as an embedded module to learn slopes to be used in the nonlinear transformation. The slopes are dependent on the input signal, and thereby the developed method has more flexible nonlinear transformations than the traditional deep learning methods. Finally, the improved performance of the developed method in learning discriminative features has been validated through fault diagnosis applications.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2020.2972458</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convolution ; Deep learning ; deep residual networks (ResNets) ; Fault diagnosis ; Inserts ; Machine learning ; Neural networks ; rectifier linear units (ReLUs) ; Rectifiers ; Teaching methods ; Training ; Transformations ; Vibration ; vibration signal ; Vibrations</subject><ispartof>IEEE transactions on industrial electronics (1982), 2021-03, Vol.68 (3), p.2587-2597</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1bc37d4ce619133181ebc15bbe230e14d25eae4550823d621a51f0f33fe934ac3</citedby><cites>FETCH-LOGICAL-c291t-1bc37d4ce619133181ebc15bbe230e14d25eae4550823d621a51f0f33fe934ac3</cites><orcidid>0000-0003-1126-8662 ; 0000-0002-8286-8860 ; 0000-0003-3342-1840 ; 0000-0003-2827-3927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8998530$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids></links><search><creatorcontrib>Zhao, Minghang</creatorcontrib><creatorcontrib>Zhong, Shisheng</creatorcontrib><creatorcontrib>Fu, Xuyun</creatorcontrib><creatorcontrib>Tang, Baoping</creatorcontrib><creatorcontrib>Dong, Shaojiang</creatorcontrib><creatorcontrib>Pecht, Michael</creatorcontrib><title>Deep Residual Networks With Adaptively Parametric Rectifier Linear Units for Fault Diagnosis</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Vibration signals under the same health state often have large differences due to changes in operating conditions. Likewise, the differences among vibration signals under different health states can be small under some operating conditions. Traditional deep learning methods apply fixed nonlinear transformations to all the input signals, which have a negative impact on the discriminative feature learning ability, i.e., projecting the intraclass signals into the same region and the interclass signals into distant regions. Aiming at this issue, this article develops a new activation function, i.e., adaptively parametric rectifier linear units, and inserts the activation function into deep residual networks to improve the feature learning ability, so that each input signal is trained to have its own set of nonlinear transformations. To be specific, a subnetwork is inserted as an embedded module to learn slopes to be used in the nonlinear transformation. The slopes are dependent on the input signal, and thereby the developed method has more flexible nonlinear transformations than the traditional deep learning methods. Finally, the improved performance of the developed method in learning discriminative features has been validated through fault diagnosis applications.</description><subject>Convolution</subject><subject>Deep learning</subject><subject>deep residual networks (ResNets)</subject><subject>Fault diagnosis</subject><subject>Inserts</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>rectifier linear units (ReLUs)</subject><subject>Rectifiers</subject><subject>Teaching methods</subject><subject>Training</subject><subject>Transformations</subject><subject>Vibration</subject><subject>vibration signal</subject><subject>Vibrations</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFb3gpsB16lz55FklqUPLRQVaXEjhElyo1PTpM5MlP57UyquzuY758BHyDWwEQDTd6vFbMQZZyOuEy5VekIGoFQSaS3TUzJgPEkjxmR8Ti683zAGUoEakLcp4o6-oLdlZ2r6iOGndZ-evtrwQcel2QX7jfWePhtnthicLXq4CLay6OjSNmgcXTc2eFq1js5NVwc6tea9ab31l-SsMrXHq78ckvV8tpo8RMun-8VkvIwKriFEkBciKWWBMWgQAlLAvACV58gFQ5AlV2hQKsVSLsqYg1FQsUqICrWQphBDcnvc3bn2q0Mfsk3buaa_zLiMlRRxLHRPsSNVuNZ7h1W2c3Zr3D4Dlh0cZr3D7OAw-3PYV26OFYuI_3iqdaoEE78DKm0N</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhao, Minghang</creator><creator>Zhong, Shisheng</creator><creator>Fu, Xuyun</creator><creator>Tang, Baoping</creator><creator>Dong, Shaojiang</creator><creator>Pecht, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1126-8662</orcidid><orcidid>https://orcid.org/0000-0002-8286-8860</orcidid><orcidid>https://orcid.org/0000-0003-3342-1840</orcidid><orcidid>https://orcid.org/0000-0003-2827-3927</orcidid></search><sort><creationdate>20210301</creationdate><title>Deep Residual Networks With Adaptively Parametric Rectifier Linear Units for Fault Diagnosis</title><author>Zhao, Minghang ; Zhong, Shisheng ; Fu, Xuyun ; Tang, Baoping ; Dong, Shaojiang ; Pecht, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1bc37d4ce619133181ebc15bbe230e14d25eae4550823d621a51f0f33fe934ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convolution</topic><topic>Deep learning</topic><topic>deep residual networks (ResNets)</topic><topic>Fault diagnosis</topic><topic>Inserts</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>rectifier linear units (ReLUs)</topic><topic>Rectifiers</topic><topic>Teaching methods</topic><topic>Training</topic><topic>Transformations</topic><topic>Vibration</topic><topic>vibration signal</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Minghang</creatorcontrib><creatorcontrib>Zhong, Shisheng</creatorcontrib><creatorcontrib>Fu, Xuyun</creatorcontrib><creatorcontrib>Tang, Baoping</creatorcontrib><creatorcontrib>Dong, Shaojiang</creatorcontrib><creatorcontrib>Pecht, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Minghang</au><au>Zhong, Shisheng</au><au>Fu, Xuyun</au><au>Tang, Baoping</au><au>Dong, Shaojiang</au><au>Pecht, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Residual Networks With Adaptively Parametric Rectifier Linear Units for Fault Diagnosis</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>68</volume><issue>3</issue><spage>2587</spage><epage>2597</epage><pages>2587-2597</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Vibration signals under the same health state often have large differences due to changes in operating conditions. Likewise, the differences among vibration signals under different health states can be small under some operating conditions. Traditional deep learning methods apply fixed nonlinear transformations to all the input signals, which have a negative impact on the discriminative feature learning ability, i.e., projecting the intraclass signals into the same region and the interclass signals into distant regions. Aiming at this issue, this article develops a new activation function, i.e., adaptively parametric rectifier linear units, and inserts the activation function into deep residual networks to improve the feature learning ability, so that each input signal is trained to have its own set of nonlinear transformations. To be specific, a subnetwork is inserted as an embedded module to learn slopes to be used in the nonlinear transformation. The slopes are dependent on the input signal, and thereby the developed method has more flexible nonlinear transformations than the traditional deep learning methods. Finally, the improved performance of the developed method in learning discriminative features has been validated through fault diagnosis applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2020.2972458</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1126-8662</orcidid><orcidid>https://orcid.org/0000-0002-8286-8860</orcidid><orcidid>https://orcid.org/0000-0003-3342-1840</orcidid><orcidid>https://orcid.org/0000-0003-2827-3927</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2021-03, Vol.68 (3), p.2587-2597
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_8998530
source IEEE Electronic Library (IEL) Journals
subjects Convolution
Deep learning
deep residual networks (ResNets)
Fault diagnosis
Inserts
Machine learning
Neural networks
rectifier linear units (ReLUs)
Rectifiers
Teaching methods
Training
Transformations
Vibration
vibration signal
Vibrations
title Deep Residual Networks With Adaptively Parametric Rectifier Linear Units for Fault Diagnosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T23%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Residual%20Networks%20With%20Adaptively%20Parametric%20Rectifier%20Linear%20Units%20for%20Fault%20Diagnosis&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Zhao,%20Minghang&rft.date=2021-03-01&rft.volume=68&rft.issue=3&rft.spage=2587&rft.epage=2597&rft.pages=2587-2597&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2020.2972458&rft_dat=%3Cproquest_ieee_%3E2465436639%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-1bc37d4ce619133181ebc15bbe230e14d25eae4550823d621a51f0f33fe934ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465436639&rft_id=info:pmid/&rft_ieee_id=8998530&rfr_iscdi=true