Loading…
Deep Residual Networks With Adaptively Parametric Rectifier Linear Units for Fault Diagnosis
Vibration signals under the same health state often have large differences due to changes in operating conditions. Likewise, the differences among vibration signals under different health states can be small under some operating conditions. Traditional deep learning methods apply fixed nonlinear tra...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2021-03, Vol.68 (3), p.2587-2597 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-1bc37d4ce619133181ebc15bbe230e14d25eae4550823d621a51f0f33fe934ac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-1bc37d4ce619133181ebc15bbe230e14d25eae4550823d621a51f0f33fe934ac3 |
container_end_page | 2597 |
container_issue | 3 |
container_start_page | 2587 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 68 |
creator | Zhao, Minghang Zhong, Shisheng Fu, Xuyun Tang, Baoping Dong, Shaojiang Pecht, Michael |
description | Vibration signals under the same health state often have large differences due to changes in operating conditions. Likewise, the differences among vibration signals under different health states can be small under some operating conditions. Traditional deep learning methods apply fixed nonlinear transformations to all the input signals, which have a negative impact on the discriminative feature learning ability, i.e., projecting the intraclass signals into the same region and the interclass signals into distant regions. Aiming at this issue, this article develops a new activation function, i.e., adaptively parametric rectifier linear units, and inserts the activation function into deep residual networks to improve the feature learning ability, so that each input signal is trained to have its own set of nonlinear transformations. To be specific, a subnetwork is inserted as an embedded module to learn slopes to be used in the nonlinear transformation. The slopes are dependent on the input signal, and thereby the developed method has more flexible nonlinear transformations than the traditional deep learning methods. Finally, the improved performance of the developed method in learning discriminative features has been validated through fault diagnosis applications. |
doi_str_mv | 10.1109/TIE.2020.2972458 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8998530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8998530</ieee_id><sourcerecordid>2465436639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1bc37d4ce619133181ebc15bbe230e14d25eae4550823d621a51f0f33fe934ac3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFb3gpsB16lz55FklqUPLRQVaXEjhElyo1PTpM5MlP57UyquzuY758BHyDWwEQDTd6vFbMQZZyOuEy5VekIGoFQSaS3TUzJgPEkjxmR8Ti683zAGUoEakLcp4o6-oLdlZ2r6iOGndZ-evtrwQcel2QX7jfWePhtnthicLXq4CLay6OjSNmgcXTc2eFq1js5NVwc6tea9ab31l-SsMrXHq78ckvV8tpo8RMun-8VkvIwKriFEkBciKWWBMWgQAlLAvACV58gFQ5AlV2hQKsVSLsqYg1FQsUqICrWQphBDcnvc3bn2q0Mfsk3buaa_zLiMlRRxLHRPsSNVuNZ7h1W2c3Zr3D4Dlh0cZr3D7OAw-3PYV26OFYuI_3iqdaoEE78DKm0N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465436639</pqid></control><display><type>article</type><title>Deep Residual Networks With Adaptively Parametric Rectifier Linear Units for Fault Diagnosis</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhao, Minghang ; Zhong, Shisheng ; Fu, Xuyun ; Tang, Baoping ; Dong, Shaojiang ; Pecht, Michael</creator><creatorcontrib>Zhao, Minghang ; Zhong, Shisheng ; Fu, Xuyun ; Tang, Baoping ; Dong, Shaojiang ; Pecht, Michael</creatorcontrib><description>Vibration signals under the same health state often have large differences due to changes in operating conditions. Likewise, the differences among vibration signals under different health states can be small under some operating conditions. Traditional deep learning methods apply fixed nonlinear transformations to all the input signals, which have a negative impact on the discriminative feature learning ability, i.e., projecting the intraclass signals into the same region and the interclass signals into distant regions. Aiming at this issue, this article develops a new activation function, i.e., adaptively parametric rectifier linear units, and inserts the activation function into deep residual networks to improve the feature learning ability, so that each input signal is trained to have its own set of nonlinear transformations. To be specific, a subnetwork is inserted as an embedded module to learn slopes to be used in the nonlinear transformation. The slopes are dependent on the input signal, and thereby the developed method has more flexible nonlinear transformations than the traditional deep learning methods. Finally, the improved performance of the developed method in learning discriminative features has been validated through fault diagnosis applications.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2020.2972458</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convolution ; Deep learning ; deep residual networks (ResNets) ; Fault diagnosis ; Inserts ; Machine learning ; Neural networks ; rectifier linear units (ReLUs) ; Rectifiers ; Teaching methods ; Training ; Transformations ; Vibration ; vibration signal ; Vibrations</subject><ispartof>IEEE transactions on industrial electronics (1982), 2021-03, Vol.68 (3), p.2587-2597</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1bc37d4ce619133181ebc15bbe230e14d25eae4550823d621a51f0f33fe934ac3</citedby><cites>FETCH-LOGICAL-c291t-1bc37d4ce619133181ebc15bbe230e14d25eae4550823d621a51f0f33fe934ac3</cites><orcidid>0000-0003-1126-8662 ; 0000-0002-8286-8860 ; 0000-0003-3342-1840 ; 0000-0003-2827-3927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8998530$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids></links><search><creatorcontrib>Zhao, Minghang</creatorcontrib><creatorcontrib>Zhong, Shisheng</creatorcontrib><creatorcontrib>Fu, Xuyun</creatorcontrib><creatorcontrib>Tang, Baoping</creatorcontrib><creatorcontrib>Dong, Shaojiang</creatorcontrib><creatorcontrib>Pecht, Michael</creatorcontrib><title>Deep Residual Networks With Adaptively Parametric Rectifier Linear Units for Fault Diagnosis</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Vibration signals under the same health state often have large differences due to changes in operating conditions. Likewise, the differences among vibration signals under different health states can be small under some operating conditions. Traditional deep learning methods apply fixed nonlinear transformations to all the input signals, which have a negative impact on the discriminative feature learning ability, i.e., projecting the intraclass signals into the same region and the interclass signals into distant regions. Aiming at this issue, this article develops a new activation function, i.e., adaptively parametric rectifier linear units, and inserts the activation function into deep residual networks to improve the feature learning ability, so that each input signal is trained to have its own set of nonlinear transformations. To be specific, a subnetwork is inserted as an embedded module to learn slopes to be used in the nonlinear transformation. The slopes are dependent on the input signal, and thereby the developed method has more flexible nonlinear transformations than the traditional deep learning methods. Finally, the improved performance of the developed method in learning discriminative features has been validated through fault diagnosis applications.</description><subject>Convolution</subject><subject>Deep learning</subject><subject>deep residual networks (ResNets)</subject><subject>Fault diagnosis</subject><subject>Inserts</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>rectifier linear units (ReLUs)</subject><subject>Rectifiers</subject><subject>Teaching methods</subject><subject>Training</subject><subject>Transformations</subject><subject>Vibration</subject><subject>vibration signal</subject><subject>Vibrations</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFb3gpsB16lz55FklqUPLRQVaXEjhElyo1PTpM5MlP57UyquzuY758BHyDWwEQDTd6vFbMQZZyOuEy5VekIGoFQSaS3TUzJgPEkjxmR8Ti683zAGUoEakLcp4o6-oLdlZ2r6iOGndZ-evtrwQcel2QX7jfWePhtnthicLXq4CLay6OjSNmgcXTc2eFq1js5NVwc6tea9ab31l-SsMrXHq78ckvV8tpo8RMun-8VkvIwKriFEkBciKWWBMWgQAlLAvACV58gFQ5AlV2hQKsVSLsqYg1FQsUqICrWQphBDcnvc3bn2q0Mfsk3buaa_zLiMlRRxLHRPsSNVuNZ7h1W2c3Zr3D4Dlh0cZr3D7OAw-3PYV26OFYuI_3iqdaoEE78DKm0N</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhao, Minghang</creator><creator>Zhong, Shisheng</creator><creator>Fu, Xuyun</creator><creator>Tang, Baoping</creator><creator>Dong, Shaojiang</creator><creator>Pecht, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1126-8662</orcidid><orcidid>https://orcid.org/0000-0002-8286-8860</orcidid><orcidid>https://orcid.org/0000-0003-3342-1840</orcidid><orcidid>https://orcid.org/0000-0003-2827-3927</orcidid></search><sort><creationdate>20210301</creationdate><title>Deep Residual Networks With Adaptively Parametric Rectifier Linear Units for Fault Diagnosis</title><author>Zhao, Minghang ; Zhong, Shisheng ; Fu, Xuyun ; Tang, Baoping ; Dong, Shaojiang ; Pecht, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1bc37d4ce619133181ebc15bbe230e14d25eae4550823d621a51f0f33fe934ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convolution</topic><topic>Deep learning</topic><topic>deep residual networks (ResNets)</topic><topic>Fault diagnosis</topic><topic>Inserts</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>rectifier linear units (ReLUs)</topic><topic>Rectifiers</topic><topic>Teaching methods</topic><topic>Training</topic><topic>Transformations</topic><topic>Vibration</topic><topic>vibration signal</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Minghang</creatorcontrib><creatorcontrib>Zhong, Shisheng</creatorcontrib><creatorcontrib>Fu, Xuyun</creatorcontrib><creatorcontrib>Tang, Baoping</creatorcontrib><creatorcontrib>Dong, Shaojiang</creatorcontrib><creatorcontrib>Pecht, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Minghang</au><au>Zhong, Shisheng</au><au>Fu, Xuyun</au><au>Tang, Baoping</au><au>Dong, Shaojiang</au><au>Pecht, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Residual Networks With Adaptively Parametric Rectifier Linear Units for Fault Diagnosis</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>68</volume><issue>3</issue><spage>2587</spage><epage>2597</epage><pages>2587-2597</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Vibration signals under the same health state often have large differences due to changes in operating conditions. Likewise, the differences among vibration signals under different health states can be small under some operating conditions. Traditional deep learning methods apply fixed nonlinear transformations to all the input signals, which have a negative impact on the discriminative feature learning ability, i.e., projecting the intraclass signals into the same region and the interclass signals into distant regions. Aiming at this issue, this article develops a new activation function, i.e., adaptively parametric rectifier linear units, and inserts the activation function into deep residual networks to improve the feature learning ability, so that each input signal is trained to have its own set of nonlinear transformations. To be specific, a subnetwork is inserted as an embedded module to learn slopes to be used in the nonlinear transformation. The slopes are dependent on the input signal, and thereby the developed method has more flexible nonlinear transformations than the traditional deep learning methods. Finally, the improved performance of the developed method in learning discriminative features has been validated through fault diagnosis applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2020.2972458</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1126-8662</orcidid><orcidid>https://orcid.org/0000-0002-8286-8860</orcidid><orcidid>https://orcid.org/0000-0003-3342-1840</orcidid><orcidid>https://orcid.org/0000-0003-2827-3927</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2021-03, Vol.68 (3), p.2587-2597 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_8998530 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Convolution Deep learning deep residual networks (ResNets) Fault diagnosis Inserts Machine learning Neural networks rectifier linear units (ReLUs) Rectifiers Teaching methods Training Transformations Vibration vibration signal Vibrations |
title | Deep Residual Networks With Adaptively Parametric Rectifier Linear Units for Fault Diagnosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T23%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Residual%20Networks%20With%20Adaptively%20Parametric%20Rectifier%20Linear%20Units%20for%20Fault%20Diagnosis&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Zhao,%20Minghang&rft.date=2021-03-01&rft.volume=68&rft.issue=3&rft.spage=2587&rft.epage=2597&rft.pages=2587-2597&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2020.2972458&rft_dat=%3Cproquest_ieee_%3E2465436639%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-1bc37d4ce619133181ebc15bbe230e14d25eae4550823d621a51f0f33fe934ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465436639&rft_id=info:pmid/&rft_ieee_id=8998530&rfr_iscdi=true |