Loading…

Open DNN Box by Power Side-Channel Attack

Deep neural networks are becoming popular and important assets of many AI companies. However, recent studies indicate that they are also vulnerable to adversarial attacks. Adversarial attacks can be either white-box or black-box. The white-box attacks assume full knowledge of the models while the bl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2020-11, Vol.67 (11), p.2717-2721
Main Authors: Xiang, Yun, Chen, Zhuangzhi, Chen, Zuohui, Fang, Zebin, Hao, Haiyang, Chen, Jinyin, Liu, Yi, Wu, Zhefu, Xuan, Qi, Yang, Xiaoniu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-39b2025697415b5f8c25516bcf7225294309b06a420a9da4e507afc933d438d23
cites cdi_FETCH-LOGICAL-c295t-39b2025697415b5f8c25516bcf7225294309b06a420a9da4e507afc933d438d23
container_end_page 2721
container_issue 11
container_start_page 2717
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 67
creator Xiang, Yun
Chen, Zhuangzhi
Chen, Zuohui
Fang, Zebin
Hao, Haiyang
Chen, Jinyin
Liu, Yi
Wu, Zhefu
Xuan, Qi
Yang, Xiaoniu
description Deep neural networks are becoming popular and important assets of many AI companies. However, recent studies indicate that they are also vulnerable to adversarial attacks. Adversarial attacks can be either white-box or black-box. The white-box attacks assume full knowledge of the models while the black-box ones assume none. In general, revealing more internal information can enable much more powerful and efficient attacks. However, in most real-world applications, the internal information of embedded AI devices is unavailable. Therefore, in this brief, we propose a side-channel information based technique to reveal the internal information of black-box models. Specifically, we have made the following contributions: (1) different from previous works, we use side-channel information to reveal internal network architecture in embedded devices; (2) we construct models for internal parameter estimation that no research has been reached yet; and (3) we validate our methods on real-world devices and applications. The experimental results show that our method can achieve 96.50% accuracy on average. Such results suggest that we should pay strong attention to the security problem of many AI devices, and further propose corresponding defensive strategies in the future.
doi_str_mv 10.1109/TCSII.2020.2973007
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9000972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9000972</ieee_id><sourcerecordid>2456527291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-39b2025697415b5f8c25516bcf7225294309b06a420a9da4e507afc933d438d23</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9A3pp4slD6-zsbrdzxOIHCQET8LzZttsIYovbEuXf2wrxNHN4n3cmD2PXHCLOge6X6WIyiRAQIiQtAPQJG3ClklBo4qf9LinUWupzdtE0awAkEDhgd_Otq4LxbBY81D9Btg9e62_ng8WqcGH6bqvKbYJR29r845KdlXbTuKvjHLK3p8dl-hJO58-TdDQNcyTVhoKy7g0Vk5ZcZapMclSKx1leakSFJAVQBrGVCJYKK50CbcuchCikSAoUQ3Z76N36-mvnmtas652vupMGpYoVaiTepfCQyn3dNN6VZutXn9bvDQfTKzF_SkyvxByVdNDNAVo55_4BAgDSKH4BrT5Y4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456527291</pqid></control><display><type>article</type><title>Open DNN Box by Power Side-Channel Attack</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xiang, Yun ; Chen, Zhuangzhi ; Chen, Zuohui ; Fang, Zebin ; Hao, Haiyang ; Chen, Jinyin ; Liu, Yi ; Wu, Zhefu ; Xuan, Qi ; Yang, Xiaoniu</creator><creatorcontrib>Xiang, Yun ; Chen, Zhuangzhi ; Chen, Zuohui ; Fang, Zebin ; Hao, Haiyang ; Chen, Jinyin ; Liu, Yi ; Wu, Zhefu ; Xuan, Qi ; Yang, Xiaoniu</creatorcontrib><description>Deep neural networks are becoming popular and important assets of many AI companies. However, recent studies indicate that they are also vulnerable to adversarial attacks. Adversarial attacks can be either white-box or black-box. The white-box attacks assume full knowledge of the models while the black-box ones assume none. In general, revealing more internal information can enable much more powerful and efficient attacks. However, in most real-world applications, the internal information of embedded AI devices is unavailable. Therefore, in this brief, we propose a side-channel information based technique to reveal the internal information of black-box models. Specifically, we have made the following contributions: (1) different from previous works, we use side-channel information to reveal internal network architecture in embedded devices; (2) we construct models for internal parameter estimation that no research has been reached yet; and (3) we validate our methods on real-world devices and applications. The experimental results show that our method can achieve 96.50% accuracy on average. Such results suggest that we should pay strong attention to the security problem of many AI devices, and further propose corresponding defensive strategies in the future.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2020.2973007</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>adversarial attacks ; Artificial intelligence ; Artificial neural networks ; Circuits and systems ; Computational modeling ; Computer architecture ; Deep learning ; Electronic devices ; Embedded systems ; machine learning ; Mathematical models ; model identification ; Neurons ; Parameter estimation ; Power demand ; Security ; side-channel attack</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2020-11, Vol.67 (11), p.2717-2721</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-39b2025697415b5f8c25516bcf7225294309b06a420a9da4e507afc933d438d23</citedby><cites>FETCH-LOGICAL-c295t-39b2025697415b5f8c25516bcf7225294309b06a420a9da4e507afc933d438d23</cites><orcidid>0000-0002-4066-689X ; 0000-0003-1163-698X ; 0000-0002-1042-470X ; 0000-0002-7153-2755 ; 0000-0003-3117-2211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9000972$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Xiang, Yun</creatorcontrib><creatorcontrib>Chen, Zhuangzhi</creatorcontrib><creatorcontrib>Chen, Zuohui</creatorcontrib><creatorcontrib>Fang, Zebin</creatorcontrib><creatorcontrib>Hao, Haiyang</creatorcontrib><creatorcontrib>Chen, Jinyin</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Wu, Zhefu</creatorcontrib><creatorcontrib>Xuan, Qi</creatorcontrib><creatorcontrib>Yang, Xiaoniu</creatorcontrib><title>Open DNN Box by Power Side-Channel Attack</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>Deep neural networks are becoming popular and important assets of many AI companies. However, recent studies indicate that they are also vulnerable to adversarial attacks. Adversarial attacks can be either white-box or black-box. The white-box attacks assume full knowledge of the models while the black-box ones assume none. In general, revealing more internal information can enable much more powerful and efficient attacks. However, in most real-world applications, the internal information of embedded AI devices is unavailable. Therefore, in this brief, we propose a side-channel information based technique to reveal the internal information of black-box models. Specifically, we have made the following contributions: (1) different from previous works, we use side-channel information to reveal internal network architecture in embedded devices; (2) we construct models for internal parameter estimation that no research has been reached yet; and (3) we validate our methods on real-world devices and applications. The experimental results show that our method can achieve 96.50% accuracy on average. Such results suggest that we should pay strong attention to the security problem of many AI devices, and further propose corresponding defensive strategies in the future.</description><subject>adversarial attacks</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Circuits and systems</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>Electronic devices</subject><subject>Embedded systems</subject><subject>machine learning</subject><subject>Mathematical models</subject><subject>model identification</subject><subject>Neurons</subject><subject>Parameter estimation</subject><subject>Power demand</subject><subject>Security</subject><subject>side-channel attack</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwkAQhjdGExH9A3pp4slD6-zsbrdzxOIHCQET8LzZttsIYovbEuXf2wrxNHN4n3cmD2PXHCLOge6X6WIyiRAQIiQtAPQJG3ClklBo4qf9LinUWupzdtE0awAkEDhgd_Otq4LxbBY81D9Btg9e62_ng8WqcGH6bqvKbYJR29r845KdlXbTuKvjHLK3p8dl-hJO58-TdDQNcyTVhoKy7g0Vk5ZcZapMclSKx1leakSFJAVQBrGVCJYKK50CbcuchCikSAoUQ3Z76N36-mvnmtas652vupMGpYoVaiTepfCQyn3dNN6VZutXn9bvDQfTKzF_SkyvxByVdNDNAVo55_4BAgDSKH4BrT5Y4g</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Xiang, Yun</creator><creator>Chen, Zhuangzhi</creator><creator>Chen, Zuohui</creator><creator>Fang, Zebin</creator><creator>Hao, Haiyang</creator><creator>Chen, Jinyin</creator><creator>Liu, Yi</creator><creator>Wu, Zhefu</creator><creator>Xuan, Qi</creator><creator>Yang, Xiaoniu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4066-689X</orcidid><orcidid>https://orcid.org/0000-0003-1163-698X</orcidid><orcidid>https://orcid.org/0000-0002-1042-470X</orcidid><orcidid>https://orcid.org/0000-0002-7153-2755</orcidid><orcidid>https://orcid.org/0000-0003-3117-2211</orcidid></search><sort><creationdate>20201101</creationdate><title>Open DNN Box by Power Side-Channel Attack</title><author>Xiang, Yun ; Chen, Zhuangzhi ; Chen, Zuohui ; Fang, Zebin ; Hao, Haiyang ; Chen, Jinyin ; Liu, Yi ; Wu, Zhefu ; Xuan, Qi ; Yang, Xiaoniu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-39b2025697415b5f8c25516bcf7225294309b06a420a9da4e507afc933d438d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adversarial attacks</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Circuits and systems</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>Electronic devices</topic><topic>Embedded systems</topic><topic>machine learning</topic><topic>Mathematical models</topic><topic>model identification</topic><topic>Neurons</topic><topic>Parameter estimation</topic><topic>Power demand</topic><topic>Security</topic><topic>side-channel attack</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Yun</creatorcontrib><creatorcontrib>Chen, Zhuangzhi</creatorcontrib><creatorcontrib>Chen, Zuohui</creatorcontrib><creatorcontrib>Fang, Zebin</creatorcontrib><creatorcontrib>Hao, Haiyang</creatorcontrib><creatorcontrib>Chen, Jinyin</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Wu, Zhefu</creatorcontrib><creatorcontrib>Xuan, Qi</creatorcontrib><creatorcontrib>Yang, Xiaoniu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Yun</au><au>Chen, Zhuangzhi</au><au>Chen, Zuohui</au><au>Fang, Zebin</au><au>Hao, Haiyang</au><au>Chen, Jinyin</au><au>Liu, Yi</au><au>Wu, Zhefu</au><au>Xuan, Qi</au><au>Yang, Xiaoniu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open DNN Box by Power Side-Channel Attack</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>67</volume><issue>11</issue><spage>2717</spage><epage>2721</epage><pages>2717-2721</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>Deep neural networks are becoming popular and important assets of many AI companies. However, recent studies indicate that they are also vulnerable to adversarial attacks. Adversarial attacks can be either white-box or black-box. The white-box attacks assume full knowledge of the models while the black-box ones assume none. In general, revealing more internal information can enable much more powerful and efficient attacks. However, in most real-world applications, the internal information of embedded AI devices is unavailable. Therefore, in this brief, we propose a side-channel information based technique to reveal the internal information of black-box models. Specifically, we have made the following contributions: (1) different from previous works, we use side-channel information to reveal internal network architecture in embedded devices; (2) we construct models for internal parameter estimation that no research has been reached yet; and (3) we validate our methods on real-world devices and applications. The experimental results show that our method can achieve 96.50% accuracy on average. Such results suggest that we should pay strong attention to the security problem of many AI devices, and further propose corresponding defensive strategies in the future.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2020.2973007</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4066-689X</orcidid><orcidid>https://orcid.org/0000-0003-1163-698X</orcidid><orcidid>https://orcid.org/0000-0002-1042-470X</orcidid><orcidid>https://orcid.org/0000-0002-7153-2755</orcidid><orcidid>https://orcid.org/0000-0003-3117-2211</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2020-11, Vol.67 (11), p.2717-2721
issn 1549-7747
1558-3791
language eng
recordid cdi_ieee_primary_9000972
source IEEE Electronic Library (IEL) Journals
subjects adversarial attacks
Artificial intelligence
Artificial neural networks
Circuits and systems
Computational modeling
Computer architecture
Deep learning
Electronic devices
Embedded systems
machine learning
Mathematical models
model identification
Neurons
Parameter estimation
Power demand
Security
side-channel attack
title Open DNN Box by Power Side-Channel Attack
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%20DNN%20Box%20by%20Power%20Side-Channel%20Attack&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Xiang,%20Yun&rft.date=2020-11-01&rft.volume=67&rft.issue=11&rft.spage=2717&rft.epage=2721&rft.pages=2717-2721&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2020.2973007&rft_dat=%3Cproquest_ieee_%3E2456527291%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-39b2025697415b5f8c25516bcf7225294309b06a420a9da4e507afc933d438d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456527291&rft_id=info:pmid/&rft_ieee_id=9000972&rfr_iscdi=true