Loading…
Fair Loss: Margin-Aware Reinforcement Learning for Deep Face Recognition
Recently, large-margin softmax loss methods, such as angular softmax loss (SphereFace), large margin cosine loss (CosFace), and additive angular margin loss (ArcFace), have demonstrated impressive performance on deep face recognition. These methods incorporate a fixed additive margin to all the clas...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 10060 |
container_issue | |
container_start_page | 10051 |
container_title | |
container_volume | |
creator | Liu, Bingyu Deng, Weihong Zhong, Yaoyao Wang, Mei Hu, Jiani Tao, Xunqiang Huang, Yaohai |
description | Recently, large-margin softmax loss methods, such as angular softmax loss (SphereFace), large margin cosine loss (CosFace), and additive angular margin loss (ArcFace), have demonstrated impressive performance on deep face recognition. These methods incorporate a fixed additive margin to all the classes, ignoring the class imbalance problem. However, imbalanced problem widely exists in various real-world face datasets, in which samples from some classes are in a higher number than others. We argue that the number of a class would influence its demand for the additive margin. In this paper, we introduce a new margin-aware reinforcement learning based loss function, namely fair loss, in which each class will learn an appropriate adaptive margin by Deep Q-learning. Specifically, we train an agent to learn a margin adaptive strategy for each class, and make the additive margins for different classes more reasonable. Our method has better performance than present large-margin loss functions on three benchmarks, Labeled Face in the Wild (LFW), Youtube Faces (YTF) and MegaFace, which demonstrates that our method could learn better face representation on imbalanced face datasets. |
doi_str_mv | 10.1109/ICCV.2019.01015 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9009488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9009488</ieee_id><sourcerecordid>9009488</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-c9ff113a196c6271490d4a03713a43a2260aa2bd1f42d26a57acb0d1e5014f2b3</originalsourceid><addsrcrecordid>eNotjEFLwzAYQKMgOOfOHrzkD7R-X5I2ibdRrRtUBFGv42ualohLR1oQ_70benrweDzGbhByRLB326r6yAWgzQEBizO2stqgFgaVAWnO2UJIA5kuQF2yq2n6BJBWmHLBNjWFxJtxmu75M6UhxGz9TcnzVx9iPybn9z7OvPGUYogDPyr-4P2B1-ROkRuHGOYwxmt20dPX5Ff_XLL3-vGt2mTNy9O2WjdZECDnzNm-R5SEtnSl0KgsdIpA6qNTkoQogUi0HfZKdKKkQpNroUNfAKpetHLJbv--wXu_O6Swp_SzswBWGSN_AVgMSq0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fair Loss: Margin-Aware Reinforcement Learning for Deep Face Recognition</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Bingyu ; Deng, Weihong ; Zhong, Yaoyao ; Wang, Mei ; Hu, Jiani ; Tao, Xunqiang ; Huang, Yaohai</creator><creatorcontrib>Liu, Bingyu ; Deng, Weihong ; Zhong, Yaoyao ; Wang, Mei ; Hu, Jiani ; Tao, Xunqiang ; Huang, Yaohai</creatorcontrib><description>Recently, large-margin softmax loss methods, such as angular softmax loss (SphereFace), large margin cosine loss (CosFace), and additive angular margin loss (ArcFace), have demonstrated impressive performance on deep face recognition. These methods incorporate a fixed additive margin to all the classes, ignoring the class imbalance problem. However, imbalanced problem widely exists in various real-world face datasets, in which samples from some classes are in a higher number than others. We argue that the number of a class would influence its demand for the additive margin. In this paper, we introduce a new margin-aware reinforcement learning based loss function, namely fair loss, in which each class will learn an appropriate adaptive margin by Deep Q-learning. Specifically, we train an agent to learn a margin adaptive strategy for each class, and make the additive margins for different classes more reasonable. Our method has better performance than present large-margin loss functions on three benchmarks, Labeled Face in the Wild (LFW), Youtube Faces (YTF) and MegaFace, which demonstrates that our method could learn better face representation on imbalanced face datasets.</description><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 9781728148038</identifier><identifier>EISBN: 1728148030</identifier><identifier>DOI: 10.1109/ICCV.2019.01015</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Additives ; Face ; Face recognition ; Feature extraction ; Learning (artificial intelligence) ; Training</subject><ispartof>2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, p.10051-10060</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9009488$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9009488$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Bingyu</creatorcontrib><creatorcontrib>Deng, Weihong</creatorcontrib><creatorcontrib>Zhong, Yaoyao</creatorcontrib><creatorcontrib>Wang, Mei</creatorcontrib><creatorcontrib>Hu, Jiani</creatorcontrib><creatorcontrib>Tao, Xunqiang</creatorcontrib><creatorcontrib>Huang, Yaohai</creatorcontrib><title>Fair Loss: Margin-Aware Reinforcement Learning for Deep Face Recognition</title><title>2019 IEEE/CVF International Conference on Computer Vision (ICCV)</title><addtitle>ICCV</addtitle><description>Recently, large-margin softmax loss methods, such as angular softmax loss (SphereFace), large margin cosine loss (CosFace), and additive angular margin loss (ArcFace), have demonstrated impressive performance on deep face recognition. These methods incorporate a fixed additive margin to all the classes, ignoring the class imbalance problem. However, imbalanced problem widely exists in various real-world face datasets, in which samples from some classes are in a higher number than others. We argue that the number of a class would influence its demand for the additive margin. In this paper, we introduce a new margin-aware reinforcement learning based loss function, namely fair loss, in which each class will learn an appropriate adaptive margin by Deep Q-learning. Specifically, we train an agent to learn a margin adaptive strategy for each class, and make the additive margins for different classes more reasonable. Our method has better performance than present large-margin loss functions on three benchmarks, Labeled Face in the Wild (LFW), Youtube Faces (YTF) and MegaFace, which demonstrates that our method could learn better face representation on imbalanced face datasets.</description><subject>Adaptation models</subject><subject>Additives</subject><subject>Face</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Learning (artificial intelligence)</subject><subject>Training</subject><issn>2380-7504</issn><isbn>9781728148038</isbn><isbn>1728148030</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjEFLwzAYQKMgOOfOHrzkD7R-X5I2ibdRrRtUBFGv42ualohLR1oQ_70benrweDzGbhByRLB326r6yAWgzQEBizO2stqgFgaVAWnO2UJIA5kuQF2yq2n6BJBWmHLBNjWFxJtxmu75M6UhxGz9TcnzVx9iPybn9z7OvPGUYogDPyr-4P2B1-ROkRuHGOYwxmt20dPX5Ff_XLL3-vGt2mTNy9O2WjdZECDnzNm-R5SEtnSl0KgsdIpA6qNTkoQogUi0HfZKdKKkQpNroUNfAKpetHLJbv--wXu_O6Swp_SzswBWGSN_AVgMSq0</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Liu, Bingyu</creator><creator>Deng, Weihong</creator><creator>Zhong, Yaoyao</creator><creator>Wang, Mei</creator><creator>Hu, Jiani</creator><creator>Tao, Xunqiang</creator><creator>Huang, Yaohai</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201910</creationdate><title>Fair Loss: Margin-Aware Reinforcement Learning for Deep Face Recognition</title><author>Liu, Bingyu ; Deng, Weihong ; Zhong, Yaoyao ; Wang, Mei ; Hu, Jiani ; Tao, Xunqiang ; Huang, Yaohai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-c9ff113a196c6271490d4a03713a43a2260aa2bd1f42d26a57acb0d1e5014f2b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Additives</topic><topic>Face</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Learning (artificial intelligence)</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bingyu</creatorcontrib><creatorcontrib>Deng, Weihong</creatorcontrib><creatorcontrib>Zhong, Yaoyao</creatorcontrib><creatorcontrib>Wang, Mei</creatorcontrib><creatorcontrib>Hu, Jiani</creatorcontrib><creatorcontrib>Tao, Xunqiang</creatorcontrib><creatorcontrib>Huang, Yaohai</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Bingyu</au><au>Deng, Weihong</au><au>Zhong, Yaoyao</au><au>Wang, Mei</au><au>Hu, Jiani</au><au>Tao, Xunqiang</au><au>Huang, Yaohai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fair Loss: Margin-Aware Reinforcement Learning for Deep Face Recognition</atitle><btitle>2019 IEEE/CVF International Conference on Computer Vision (ICCV)</btitle><stitle>ICCV</stitle><date>2019-10</date><risdate>2019</risdate><spage>10051</spage><epage>10060</epage><pages>10051-10060</pages><eissn>2380-7504</eissn><eisbn>9781728148038</eisbn><eisbn>1728148030</eisbn><abstract>Recently, large-margin softmax loss methods, such as angular softmax loss (SphereFace), large margin cosine loss (CosFace), and additive angular margin loss (ArcFace), have demonstrated impressive performance on deep face recognition. These methods incorporate a fixed additive margin to all the classes, ignoring the class imbalance problem. However, imbalanced problem widely exists in various real-world face datasets, in which samples from some classes are in a higher number than others. We argue that the number of a class would influence its demand for the additive margin. In this paper, we introduce a new margin-aware reinforcement learning based loss function, namely fair loss, in which each class will learn an appropriate adaptive margin by Deep Q-learning. Specifically, we train an agent to learn a margin adaptive strategy for each class, and make the additive margins for different classes more reasonable. Our method has better performance than present large-margin loss functions on three benchmarks, Labeled Face in the Wild (LFW), Youtube Faces (YTF) and MegaFace, which demonstrates that our method could learn better face representation on imbalanced face datasets.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2019.01015</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2380-7504 |
ispartof | 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, p.10051-10060 |
issn | 2380-7504 |
language | eng |
recordid | cdi_ieee_primary_9009488 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models Additives Face Face recognition Feature extraction Learning (artificial intelligence) Training |
title | Fair Loss: Margin-Aware Reinforcement Learning for Deep Face Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fair%20Loss:%20Margin-Aware%20Reinforcement%20Learning%20for%20Deep%20Face%20Recognition&rft.btitle=2019%20IEEE/CVF%20International%20Conference%20on%20Computer%20Vision%20(ICCV)&rft.au=Liu,%20Bingyu&rft.date=2019-10&rft.spage=10051&rft.epage=10060&rft.pages=10051-10060&rft.eissn=2380-7504&rft_id=info:doi/10.1109/ICCV.2019.01015&rft.eisbn=9781728148038&rft.eisbn_list=1728148030&rft_dat=%3Cieee_CHZPO%3E9009488%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-c9ff113a196c6271490d4a03713a43a2260aa2bd1f42d26a57acb0d1e5014f2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9009488&rfr_iscdi=true |