Loading…

Fair Loss: Margin-Aware Reinforcement Learning for Deep Face Recognition

Recently, large-margin softmax loss methods, such as angular softmax loss (SphereFace), large margin cosine loss (CosFace), and additive angular margin loss (ArcFace), have demonstrated impressive performance on deep face recognition. These methods incorporate a fixed additive margin to all the clas...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, Bingyu, Deng, Weihong, Zhong, Yaoyao, Wang, Mei, Hu, Jiani, Tao, Xunqiang, Huang, Yaohai
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10060
container_issue
container_start_page 10051
container_title
container_volume
creator Liu, Bingyu
Deng, Weihong
Zhong, Yaoyao
Wang, Mei
Hu, Jiani
Tao, Xunqiang
Huang, Yaohai
description Recently, large-margin softmax loss methods, such as angular softmax loss (SphereFace), large margin cosine loss (CosFace), and additive angular margin loss (ArcFace), have demonstrated impressive performance on deep face recognition. These methods incorporate a fixed additive margin to all the classes, ignoring the class imbalance problem. However, imbalanced problem widely exists in various real-world face datasets, in which samples from some classes are in a higher number than others. We argue that the number of a class would influence its demand for the additive margin. In this paper, we introduce a new margin-aware reinforcement learning based loss function, namely fair loss, in which each class will learn an appropriate adaptive margin by Deep Q-learning. Specifically, we train an agent to learn a margin adaptive strategy for each class, and make the additive margins for different classes more reasonable. Our method has better performance than present large-margin loss functions on three benchmarks, Labeled Face in the Wild (LFW), Youtube Faces (YTF) and MegaFace, which demonstrates that our method could learn better face representation on imbalanced face datasets.
doi_str_mv 10.1109/ICCV.2019.01015
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9009488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9009488</ieee_id><sourcerecordid>9009488</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-c9ff113a196c6271490d4a03713a43a2260aa2bd1f42d26a57acb0d1e5014f2b3</originalsourceid><addsrcrecordid>eNotjEFLwzAYQKMgOOfOHrzkD7R-X5I2ibdRrRtUBFGv42ualohLR1oQ_70benrweDzGbhByRLB326r6yAWgzQEBizO2stqgFgaVAWnO2UJIA5kuQF2yq2n6BJBWmHLBNjWFxJtxmu75M6UhxGz9TcnzVx9iPybn9z7OvPGUYogDPyr-4P2B1-ROkRuHGOYwxmt20dPX5Ff_XLL3-vGt2mTNy9O2WjdZECDnzNm-R5SEtnSl0KgsdIpA6qNTkoQogUi0HfZKdKKkQpNroUNfAKpetHLJbv--wXu_O6Swp_SzswBWGSN_AVgMSq0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fair Loss: Margin-Aware Reinforcement Learning for Deep Face Recognition</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Bingyu ; Deng, Weihong ; Zhong, Yaoyao ; Wang, Mei ; Hu, Jiani ; Tao, Xunqiang ; Huang, Yaohai</creator><creatorcontrib>Liu, Bingyu ; Deng, Weihong ; Zhong, Yaoyao ; Wang, Mei ; Hu, Jiani ; Tao, Xunqiang ; Huang, Yaohai</creatorcontrib><description>Recently, large-margin softmax loss methods, such as angular softmax loss (SphereFace), large margin cosine loss (CosFace), and additive angular margin loss (ArcFace), have demonstrated impressive performance on deep face recognition. These methods incorporate a fixed additive margin to all the classes, ignoring the class imbalance problem. However, imbalanced problem widely exists in various real-world face datasets, in which samples from some classes are in a higher number than others. We argue that the number of a class would influence its demand for the additive margin. In this paper, we introduce a new margin-aware reinforcement learning based loss function, namely fair loss, in which each class will learn an appropriate adaptive margin by Deep Q-learning. Specifically, we train an agent to learn a margin adaptive strategy for each class, and make the additive margins for different classes more reasonable. Our method has better performance than present large-margin loss functions on three benchmarks, Labeled Face in the Wild (LFW), Youtube Faces (YTF) and MegaFace, which demonstrates that our method could learn better face representation on imbalanced face datasets.</description><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 9781728148038</identifier><identifier>EISBN: 1728148030</identifier><identifier>DOI: 10.1109/ICCV.2019.01015</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Additives ; Face ; Face recognition ; Feature extraction ; Learning (artificial intelligence) ; Training</subject><ispartof>2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, p.10051-10060</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9009488$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9009488$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Bingyu</creatorcontrib><creatorcontrib>Deng, Weihong</creatorcontrib><creatorcontrib>Zhong, Yaoyao</creatorcontrib><creatorcontrib>Wang, Mei</creatorcontrib><creatorcontrib>Hu, Jiani</creatorcontrib><creatorcontrib>Tao, Xunqiang</creatorcontrib><creatorcontrib>Huang, Yaohai</creatorcontrib><title>Fair Loss: Margin-Aware Reinforcement Learning for Deep Face Recognition</title><title>2019 IEEE/CVF International Conference on Computer Vision (ICCV)</title><addtitle>ICCV</addtitle><description>Recently, large-margin softmax loss methods, such as angular softmax loss (SphereFace), large margin cosine loss (CosFace), and additive angular margin loss (ArcFace), have demonstrated impressive performance on deep face recognition. These methods incorporate a fixed additive margin to all the classes, ignoring the class imbalance problem. However, imbalanced problem widely exists in various real-world face datasets, in which samples from some classes are in a higher number than others. We argue that the number of a class would influence its demand for the additive margin. In this paper, we introduce a new margin-aware reinforcement learning based loss function, namely fair loss, in which each class will learn an appropriate adaptive margin by Deep Q-learning. Specifically, we train an agent to learn a margin adaptive strategy for each class, and make the additive margins for different classes more reasonable. Our method has better performance than present large-margin loss functions on three benchmarks, Labeled Face in the Wild (LFW), Youtube Faces (YTF) and MegaFace, which demonstrates that our method could learn better face representation on imbalanced face datasets.</description><subject>Adaptation models</subject><subject>Additives</subject><subject>Face</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Learning (artificial intelligence)</subject><subject>Training</subject><issn>2380-7504</issn><isbn>9781728148038</isbn><isbn>1728148030</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjEFLwzAYQKMgOOfOHrzkD7R-X5I2ibdRrRtUBFGv42ualohLR1oQ_70benrweDzGbhByRLB326r6yAWgzQEBizO2stqgFgaVAWnO2UJIA5kuQF2yq2n6BJBWmHLBNjWFxJtxmu75M6UhxGz9TcnzVx9iPybn9z7OvPGUYogDPyr-4P2B1-ROkRuHGOYwxmt20dPX5Ff_XLL3-vGt2mTNy9O2WjdZECDnzNm-R5SEtnSl0KgsdIpA6qNTkoQogUi0HfZKdKKkQpNroUNfAKpetHLJbv--wXu_O6Swp_SzswBWGSN_AVgMSq0</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Liu, Bingyu</creator><creator>Deng, Weihong</creator><creator>Zhong, Yaoyao</creator><creator>Wang, Mei</creator><creator>Hu, Jiani</creator><creator>Tao, Xunqiang</creator><creator>Huang, Yaohai</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201910</creationdate><title>Fair Loss: Margin-Aware Reinforcement Learning for Deep Face Recognition</title><author>Liu, Bingyu ; Deng, Weihong ; Zhong, Yaoyao ; Wang, Mei ; Hu, Jiani ; Tao, Xunqiang ; Huang, Yaohai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-c9ff113a196c6271490d4a03713a43a2260aa2bd1f42d26a57acb0d1e5014f2b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Additives</topic><topic>Face</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Learning (artificial intelligence)</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bingyu</creatorcontrib><creatorcontrib>Deng, Weihong</creatorcontrib><creatorcontrib>Zhong, Yaoyao</creatorcontrib><creatorcontrib>Wang, Mei</creatorcontrib><creatorcontrib>Hu, Jiani</creatorcontrib><creatorcontrib>Tao, Xunqiang</creatorcontrib><creatorcontrib>Huang, Yaohai</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Bingyu</au><au>Deng, Weihong</au><au>Zhong, Yaoyao</au><au>Wang, Mei</au><au>Hu, Jiani</au><au>Tao, Xunqiang</au><au>Huang, Yaohai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fair Loss: Margin-Aware Reinforcement Learning for Deep Face Recognition</atitle><btitle>2019 IEEE/CVF International Conference on Computer Vision (ICCV)</btitle><stitle>ICCV</stitle><date>2019-10</date><risdate>2019</risdate><spage>10051</spage><epage>10060</epage><pages>10051-10060</pages><eissn>2380-7504</eissn><eisbn>9781728148038</eisbn><eisbn>1728148030</eisbn><abstract>Recently, large-margin softmax loss methods, such as angular softmax loss (SphereFace), large margin cosine loss (CosFace), and additive angular margin loss (ArcFace), have demonstrated impressive performance on deep face recognition. These methods incorporate a fixed additive margin to all the classes, ignoring the class imbalance problem. However, imbalanced problem widely exists in various real-world face datasets, in which samples from some classes are in a higher number than others. We argue that the number of a class would influence its demand for the additive margin. In this paper, we introduce a new margin-aware reinforcement learning based loss function, namely fair loss, in which each class will learn an appropriate adaptive margin by Deep Q-learning. Specifically, we train an agent to learn a margin adaptive strategy for each class, and make the additive margins for different classes more reasonable. Our method has better performance than present large-margin loss functions on three benchmarks, Labeled Face in the Wild (LFW), Youtube Faces (YTF) and MegaFace, which demonstrates that our method could learn better face representation on imbalanced face datasets.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2019.01015</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2380-7504
ispartof 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, p.10051-10060
issn 2380-7504
language eng
recordid cdi_ieee_primary_9009488
source IEEE Xplore All Conference Series
subjects Adaptation models
Additives
Face
Face recognition
Feature extraction
Learning (artificial intelligence)
Training
title Fair Loss: Margin-Aware Reinforcement Learning for Deep Face Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fair%20Loss:%20Margin-Aware%20Reinforcement%20Learning%20for%20Deep%20Face%20Recognition&rft.btitle=2019%20IEEE/CVF%20International%20Conference%20on%20Computer%20Vision%20(ICCV)&rft.au=Liu,%20Bingyu&rft.date=2019-10&rft.spage=10051&rft.epage=10060&rft.pages=10051-10060&rft.eissn=2380-7504&rft_id=info:doi/10.1109/ICCV.2019.01015&rft.eisbn=9781728148038&rft.eisbn_list=1728148030&rft_dat=%3Cieee_CHZPO%3E9009488%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-c9ff113a196c6271490d4a03713a43a2260aa2bd1f42d26a57acb0d1e5014f2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9009488&rfr_iscdi=true