Loading…
Attentional Neural Fields for Crowd Counting
Crowd counting has recently generated huge popularity in computer vision, and is extremely challenging due to the huge scale variations of objects. In this paper, we propose the Attentional Neural Field (ANF) for crowd counting via density estimation. Within the encoder-decoder network, we introduce...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Crowd counting has recently generated huge popularity in computer vision, and is extremely challenging due to the huge scale variations of objects. In this paper, we propose the Attentional Neural Field (ANF) for crowd counting via density estimation. Within the encoder-decoder network, we introduce conditional random fields (CRFs) to aggregate multi-scale features, which can build more informative representations. To better model pair-wise potentials in CRFs, we incorperate non-local attention mechanism implemented as inter- and intra-layer attentions to expand the receptive field to the entire image respectively within the same layer and across different layers, which captures long-range dependencies to conquer huge scale variations. The CRFs coupled with the attention mechanism are seamlessly integrated into the encoder-decoder network, establishing an ANF that can be optimized end-to-end by back propagation. We conduct extensive experiments on four public datasets, including ShanghaiTech, WorldEXPO 10, UCF-CC-50 and UCF-QNRF. The results show that our ANF achieves high counting performance, surpassing most previous methods. |
---|---|
ISSN: | 2380-7504 |
DOI: | 10.1109/ICCV.2019.00581 |