Loading…

Image Inpainting With Learnable Bidirectional Attention Maps

Most convolutional network (CNN)-based inpainting methods adopt standard convolution to indistinguishably treat valid pixels and holes, making them limited in handling irregular holes and more likely to generate inpainting results with color discrepancy and blurriness. Partial convolution has been s...

Full description

Saved in:
Bibliographic Details
Main Authors: Xie, Chaohao, Liu, Shaohui, Li, Chao, Cheng, Ming-Ming, Zuo, Wangmeng, Liu, Xiao, Wen, Shilei, Ding, Errui
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-252154e401d35ecb88a594aefbc68431a0eeefa407fcb2e68bc6e25a866efe5e3
cites
container_end_page 8866
container_issue
container_start_page 8857
container_title
container_volume
creator Xie, Chaohao
Liu, Shaohui
Li, Chao
Cheng, Ming-Ming
Zuo, Wangmeng
Liu, Xiao
Wen, Shilei
Ding, Errui
description Most convolutional network (CNN)-based inpainting methods adopt standard convolution to indistinguishably treat valid pixels and holes, making them limited in handling irregular holes and more likely to generate inpainting results with color discrepancy and blurriness. Partial convolution has been suggested to address this issue, but it adopts handcrafted feature re-normalization, and only considers forward mask-updating. In this paper, we present a learnable attention map module for learning feature re-normalization and mask-updating in an end-to-end manner, which is effective in adapting to irregular holes and propagation of convolution layers. Furthermore, learnable reverse attention maps are introduced to allow the decoder of U-Net to concentrate on filling in irregular holes instead of reconstructing both holes and known regions, resulting in our learnable bidirectional attention maps. Qualitative and quantitative experiments show that our method performs favorably against state-of-the-arts in generating sharper, more coherent and visually plausible inpainting results. The source code and pre-trained models will be available at: https://github.com/Vious/LBAM_inpainting/.
doi_str_mv 10.1109/ICCV.2019.00895
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9010337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9010337</ieee_id><sourcerecordid>9010337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-252154e401d35ecb88a594aefbc68431a0eeefa407fcb2e68bc6e25a866efe5e3</originalsourceid><addsrcrecordid>eNotjEtLw0AURkdBsNauXbiZP5B455XcATc1WA1E3PhYlpv0po6kY0hm47-3oqvvcDh8QlwpyJUCf1NX1VuuQfkcAL07EStfoio1Kotg8FQstEHISgf2XFzM8yeA8RqLhbitD7RnWceRQkwh7uV7SB-yYZoitQPLu7ALE3cpfEUa5Doljr8sn2icL8VZT8PMq_9ditfN_Uv1mDXPD3W1brJOW58y7bRyli2onXHctYjkvCXu265AaxQBM_dkoey7VnOBR8_aERYF9-zYLMX13284httxCgeavrceFBhTmh8UMUhG</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image Inpainting With Learnable Bidirectional Attention Maps</title><source>IEEE Xplore All Conference Series</source><creator>Xie, Chaohao ; Liu, Shaohui ; Li, Chao ; Cheng, Ming-Ming ; Zuo, Wangmeng ; Liu, Xiao ; Wen, Shilei ; Ding, Errui</creator><creatorcontrib>Xie, Chaohao ; Liu, Shaohui ; Li, Chao ; Cheng, Ming-Ming ; Zuo, Wangmeng ; Liu, Xiao ; Wen, Shilei ; Ding, Errui</creatorcontrib><description>Most convolutional network (CNN)-based inpainting methods adopt standard convolution to indistinguishably treat valid pixels and holes, making them limited in handling irregular holes and more likely to generate inpainting results with color discrepancy and blurriness. Partial convolution has been suggested to address this issue, but it adopts handcrafted feature re-normalization, and only considers forward mask-updating. In this paper, we present a learnable attention map module for learning feature re-normalization and mask-updating in an end-to-end manner, which is effective in adapting to irregular holes and propagation of convolution layers. Furthermore, learnable reverse attention maps are introduced to allow the decoder of U-Net to concentrate on filling in irregular holes instead of reconstructing both holes and known regions, resulting in our learnable bidirectional attention maps. Qualitative and quantitative experiments show that our method performs favorably against state-of-the-arts in generating sharper, more coherent and visually plausible inpainting results. The source code and pre-trained models will be available at: https://github.com/Vious/LBAM_inpainting/.</description><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 9781728148038</identifier><identifier>EISBN: 1728148030</identifier><identifier>DOI: 10.1109/ICCV.2019.00895</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolution ; Decoding ; Frequency modulation ; Image color analysis ; Image reconstruction ; Semantics ; Training</subject><ispartof>2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, p.8857-8866</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-252154e401d35ecb88a594aefbc68431a0eeefa407fcb2e68bc6e25a866efe5e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9010337$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54534,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9010337$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xie, Chaohao</creatorcontrib><creatorcontrib>Liu, Shaohui</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Cheng, Ming-Ming</creatorcontrib><creatorcontrib>Zuo, Wangmeng</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Wen, Shilei</creatorcontrib><creatorcontrib>Ding, Errui</creatorcontrib><title>Image Inpainting With Learnable Bidirectional Attention Maps</title><title>2019 IEEE/CVF International Conference on Computer Vision (ICCV)</title><addtitle>ICCV</addtitle><description>Most convolutional network (CNN)-based inpainting methods adopt standard convolution to indistinguishably treat valid pixels and holes, making them limited in handling irregular holes and more likely to generate inpainting results with color discrepancy and blurriness. Partial convolution has been suggested to address this issue, but it adopts handcrafted feature re-normalization, and only considers forward mask-updating. In this paper, we present a learnable attention map module for learning feature re-normalization and mask-updating in an end-to-end manner, which is effective in adapting to irregular holes and propagation of convolution layers. Furthermore, learnable reverse attention maps are introduced to allow the decoder of U-Net to concentrate on filling in irregular holes instead of reconstructing both holes and known regions, resulting in our learnable bidirectional attention maps. Qualitative and quantitative experiments show that our method performs favorably against state-of-the-arts in generating sharper, more coherent and visually plausible inpainting results. The source code and pre-trained models will be available at: https://github.com/Vious/LBAM_inpainting/.</description><subject>Convolution</subject><subject>Decoding</subject><subject>Frequency modulation</subject><subject>Image color analysis</subject><subject>Image reconstruction</subject><subject>Semantics</subject><subject>Training</subject><issn>2380-7504</issn><isbn>9781728148038</isbn><isbn>1728148030</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjEtLw0AURkdBsNauXbiZP5B455XcATc1WA1E3PhYlpv0po6kY0hm47-3oqvvcDh8QlwpyJUCf1NX1VuuQfkcAL07EStfoio1Kotg8FQstEHISgf2XFzM8yeA8RqLhbitD7RnWceRQkwh7uV7SB-yYZoitQPLu7ALE3cpfEUa5Doljr8sn2icL8VZT8PMq_9ditfN_Uv1mDXPD3W1brJOW58y7bRyli2onXHctYjkvCXu265AaxQBM_dkoey7VnOBR8_aERYF9-zYLMX13284httxCgeavrceFBhTmh8UMUhG</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Xie, Chaohao</creator><creator>Liu, Shaohui</creator><creator>Li, Chao</creator><creator>Cheng, Ming-Ming</creator><creator>Zuo, Wangmeng</creator><creator>Liu, Xiao</creator><creator>Wen, Shilei</creator><creator>Ding, Errui</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201910</creationdate><title>Image Inpainting With Learnable Bidirectional Attention Maps</title><author>Xie, Chaohao ; Liu, Shaohui ; Li, Chao ; Cheng, Ming-Ming ; Zuo, Wangmeng ; Liu, Xiao ; Wen, Shilei ; Ding, Errui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-252154e401d35ecb88a594aefbc68431a0eeefa407fcb2e68bc6e25a866efe5e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Convolution</topic><topic>Decoding</topic><topic>Frequency modulation</topic><topic>Image color analysis</topic><topic>Image reconstruction</topic><topic>Semantics</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Xie, Chaohao</creatorcontrib><creatorcontrib>Liu, Shaohui</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Cheng, Ming-Ming</creatorcontrib><creatorcontrib>Zuo, Wangmeng</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Wen, Shilei</creatorcontrib><creatorcontrib>Ding, Errui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Chaohao</au><au>Liu, Shaohui</au><au>Li, Chao</au><au>Cheng, Ming-Ming</au><au>Zuo, Wangmeng</au><au>Liu, Xiao</au><au>Wen, Shilei</au><au>Ding, Errui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image Inpainting With Learnable Bidirectional Attention Maps</atitle><btitle>2019 IEEE/CVF International Conference on Computer Vision (ICCV)</btitle><stitle>ICCV</stitle><date>2019-10</date><risdate>2019</risdate><spage>8857</spage><epage>8866</epage><pages>8857-8866</pages><eissn>2380-7504</eissn><eisbn>9781728148038</eisbn><eisbn>1728148030</eisbn><abstract>Most convolutional network (CNN)-based inpainting methods adopt standard convolution to indistinguishably treat valid pixels and holes, making them limited in handling irregular holes and more likely to generate inpainting results with color discrepancy and blurriness. Partial convolution has been suggested to address this issue, but it adopts handcrafted feature re-normalization, and only considers forward mask-updating. In this paper, we present a learnable attention map module for learning feature re-normalization and mask-updating in an end-to-end manner, which is effective in adapting to irregular holes and propagation of convolution layers. Furthermore, learnable reverse attention maps are introduced to allow the decoder of U-Net to concentrate on filling in irregular holes instead of reconstructing both holes and known regions, resulting in our learnable bidirectional attention maps. Qualitative and quantitative experiments show that our method performs favorably against state-of-the-arts in generating sharper, more coherent and visually plausible inpainting results. The source code and pre-trained models will be available at: https://github.com/Vious/LBAM_inpainting/.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2019.00895</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2380-7504
ispartof 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, p.8857-8866
issn 2380-7504
language eng
recordid cdi_ieee_primary_9010337
source IEEE Xplore All Conference Series
subjects Convolution
Decoding
Frequency modulation
Image color analysis
Image reconstruction
Semantics
Training
title Image Inpainting With Learnable Bidirectional Attention Maps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20Inpainting%20With%20Learnable%20Bidirectional%20Attention%20Maps&rft.btitle=2019%20IEEE/CVF%20International%20Conference%20on%20Computer%20Vision%20(ICCV)&rft.au=Xie,%20Chaohao&rft.date=2019-10&rft.spage=8857&rft.epage=8866&rft.pages=8857-8866&rft.eissn=2380-7504&rft_id=info:doi/10.1109/ICCV.2019.00895&rft.eisbn=9781728148038&rft.eisbn_list=1728148030&rft_dat=%3Cieee_CHZPO%3E9010337%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-252154e401d35ecb88a594aefbc68431a0eeefa407fcb2e68bc6e25a866efe5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9010337&rfr_iscdi=true