Loading…
Image Inpainting With Learnable Bidirectional Attention Maps
Most convolutional network (CNN)-based inpainting methods adopt standard convolution to indistinguishably treat valid pixels and holes, making them limited in handling irregular holes and more likely to generate inpainting results with color discrepancy and blurriness. Partial convolution has been s...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c249t-252154e401d35ecb88a594aefbc68431a0eeefa407fcb2e68bc6e25a866efe5e3 |
---|---|
cites | |
container_end_page | 8866 |
container_issue | |
container_start_page | 8857 |
container_title | |
container_volume | |
creator | Xie, Chaohao Liu, Shaohui Li, Chao Cheng, Ming-Ming Zuo, Wangmeng Liu, Xiao Wen, Shilei Ding, Errui |
description | Most convolutional network (CNN)-based inpainting methods adopt standard convolution to indistinguishably treat valid pixels and holes, making them limited in handling irregular holes and more likely to generate inpainting results with color discrepancy and blurriness. Partial convolution has been suggested to address this issue, but it adopts handcrafted feature re-normalization, and only considers forward mask-updating. In this paper, we present a learnable attention map module for learning feature re-normalization and mask-updating in an end-to-end manner, which is effective in adapting to irregular holes and propagation of convolution layers. Furthermore, learnable reverse attention maps are introduced to allow the decoder of U-Net to concentrate on filling in irregular holes instead of reconstructing both holes and known regions, resulting in our learnable bidirectional attention maps. Qualitative and quantitative experiments show that our method performs favorably against state-of-the-arts in generating sharper, more coherent and visually plausible inpainting results. The source code and pre-trained models will be available at: https://github.com/Vious/LBAM_inpainting/. |
doi_str_mv | 10.1109/ICCV.2019.00895 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9010337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9010337</ieee_id><sourcerecordid>9010337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-252154e401d35ecb88a594aefbc68431a0eeefa407fcb2e68bc6e25a866efe5e3</originalsourceid><addsrcrecordid>eNotjEtLw0AURkdBsNauXbiZP5B455XcATc1WA1E3PhYlpv0po6kY0hm47-3oqvvcDh8QlwpyJUCf1NX1VuuQfkcAL07EStfoio1Kotg8FQstEHISgf2XFzM8yeA8RqLhbitD7RnWceRQkwh7uV7SB-yYZoitQPLu7ALE3cpfEUa5Doljr8sn2icL8VZT8PMq_9ditfN_Uv1mDXPD3W1brJOW58y7bRyli2onXHctYjkvCXu265AaxQBM_dkoey7VnOBR8_aERYF9-zYLMX13284httxCgeavrceFBhTmh8UMUhG</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image Inpainting With Learnable Bidirectional Attention Maps</title><source>IEEE Xplore All Conference Series</source><creator>Xie, Chaohao ; Liu, Shaohui ; Li, Chao ; Cheng, Ming-Ming ; Zuo, Wangmeng ; Liu, Xiao ; Wen, Shilei ; Ding, Errui</creator><creatorcontrib>Xie, Chaohao ; Liu, Shaohui ; Li, Chao ; Cheng, Ming-Ming ; Zuo, Wangmeng ; Liu, Xiao ; Wen, Shilei ; Ding, Errui</creatorcontrib><description>Most convolutional network (CNN)-based inpainting methods adopt standard convolution to indistinguishably treat valid pixels and holes, making them limited in handling irregular holes and more likely to generate inpainting results with color discrepancy and blurriness. Partial convolution has been suggested to address this issue, but it adopts handcrafted feature re-normalization, and only considers forward mask-updating. In this paper, we present a learnable attention map module for learning feature re-normalization and mask-updating in an end-to-end manner, which is effective in adapting to irregular holes and propagation of convolution layers. Furthermore, learnable reverse attention maps are introduced to allow the decoder of U-Net to concentrate on filling in irregular holes instead of reconstructing both holes and known regions, resulting in our learnable bidirectional attention maps. Qualitative and quantitative experiments show that our method performs favorably against state-of-the-arts in generating sharper, more coherent and visually plausible inpainting results. The source code and pre-trained models will be available at: https://github.com/Vious/LBAM_inpainting/.</description><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 9781728148038</identifier><identifier>EISBN: 1728148030</identifier><identifier>DOI: 10.1109/ICCV.2019.00895</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolution ; Decoding ; Frequency modulation ; Image color analysis ; Image reconstruction ; Semantics ; Training</subject><ispartof>2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, p.8857-8866</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-252154e401d35ecb88a594aefbc68431a0eeefa407fcb2e68bc6e25a866efe5e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9010337$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54534,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9010337$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xie, Chaohao</creatorcontrib><creatorcontrib>Liu, Shaohui</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Cheng, Ming-Ming</creatorcontrib><creatorcontrib>Zuo, Wangmeng</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Wen, Shilei</creatorcontrib><creatorcontrib>Ding, Errui</creatorcontrib><title>Image Inpainting With Learnable Bidirectional Attention Maps</title><title>2019 IEEE/CVF International Conference on Computer Vision (ICCV)</title><addtitle>ICCV</addtitle><description>Most convolutional network (CNN)-based inpainting methods adopt standard convolution to indistinguishably treat valid pixels and holes, making them limited in handling irregular holes and more likely to generate inpainting results with color discrepancy and blurriness. Partial convolution has been suggested to address this issue, but it adopts handcrafted feature re-normalization, and only considers forward mask-updating. In this paper, we present a learnable attention map module for learning feature re-normalization and mask-updating in an end-to-end manner, which is effective in adapting to irregular holes and propagation of convolution layers. Furthermore, learnable reverse attention maps are introduced to allow the decoder of U-Net to concentrate on filling in irregular holes instead of reconstructing both holes and known regions, resulting in our learnable bidirectional attention maps. Qualitative and quantitative experiments show that our method performs favorably against state-of-the-arts in generating sharper, more coherent and visually plausible inpainting results. The source code and pre-trained models will be available at: https://github.com/Vious/LBAM_inpainting/.</description><subject>Convolution</subject><subject>Decoding</subject><subject>Frequency modulation</subject><subject>Image color analysis</subject><subject>Image reconstruction</subject><subject>Semantics</subject><subject>Training</subject><issn>2380-7504</issn><isbn>9781728148038</isbn><isbn>1728148030</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjEtLw0AURkdBsNauXbiZP5B455XcATc1WA1E3PhYlpv0po6kY0hm47-3oqvvcDh8QlwpyJUCf1NX1VuuQfkcAL07EStfoio1Kotg8FQstEHISgf2XFzM8yeA8RqLhbitD7RnWceRQkwh7uV7SB-yYZoitQPLu7ALE3cpfEUa5Doljr8sn2icL8VZT8PMq_9ditfN_Uv1mDXPD3W1brJOW58y7bRyli2onXHctYjkvCXu265AaxQBM_dkoey7VnOBR8_aERYF9-zYLMX13284httxCgeavrceFBhTmh8UMUhG</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Xie, Chaohao</creator><creator>Liu, Shaohui</creator><creator>Li, Chao</creator><creator>Cheng, Ming-Ming</creator><creator>Zuo, Wangmeng</creator><creator>Liu, Xiao</creator><creator>Wen, Shilei</creator><creator>Ding, Errui</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201910</creationdate><title>Image Inpainting With Learnable Bidirectional Attention Maps</title><author>Xie, Chaohao ; Liu, Shaohui ; Li, Chao ; Cheng, Ming-Ming ; Zuo, Wangmeng ; Liu, Xiao ; Wen, Shilei ; Ding, Errui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-252154e401d35ecb88a594aefbc68431a0eeefa407fcb2e68bc6e25a866efe5e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Convolution</topic><topic>Decoding</topic><topic>Frequency modulation</topic><topic>Image color analysis</topic><topic>Image reconstruction</topic><topic>Semantics</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Xie, Chaohao</creatorcontrib><creatorcontrib>Liu, Shaohui</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Cheng, Ming-Ming</creatorcontrib><creatorcontrib>Zuo, Wangmeng</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Wen, Shilei</creatorcontrib><creatorcontrib>Ding, Errui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Chaohao</au><au>Liu, Shaohui</au><au>Li, Chao</au><au>Cheng, Ming-Ming</au><au>Zuo, Wangmeng</au><au>Liu, Xiao</au><au>Wen, Shilei</au><au>Ding, Errui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image Inpainting With Learnable Bidirectional Attention Maps</atitle><btitle>2019 IEEE/CVF International Conference on Computer Vision (ICCV)</btitle><stitle>ICCV</stitle><date>2019-10</date><risdate>2019</risdate><spage>8857</spage><epage>8866</epage><pages>8857-8866</pages><eissn>2380-7504</eissn><eisbn>9781728148038</eisbn><eisbn>1728148030</eisbn><abstract>Most convolutional network (CNN)-based inpainting methods adopt standard convolution to indistinguishably treat valid pixels and holes, making them limited in handling irregular holes and more likely to generate inpainting results with color discrepancy and blurriness. Partial convolution has been suggested to address this issue, but it adopts handcrafted feature re-normalization, and only considers forward mask-updating. In this paper, we present a learnable attention map module for learning feature re-normalization and mask-updating in an end-to-end manner, which is effective in adapting to irregular holes and propagation of convolution layers. Furthermore, learnable reverse attention maps are introduced to allow the decoder of U-Net to concentrate on filling in irregular holes instead of reconstructing both holes and known regions, resulting in our learnable bidirectional attention maps. Qualitative and quantitative experiments show that our method performs favorably against state-of-the-arts in generating sharper, more coherent and visually plausible inpainting results. The source code and pre-trained models will be available at: https://github.com/Vious/LBAM_inpainting/.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2019.00895</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2380-7504 |
ispartof | 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, p.8857-8866 |
issn | 2380-7504 |
language | eng |
recordid | cdi_ieee_primary_9010337 |
source | IEEE Xplore All Conference Series |
subjects | Convolution Decoding Frequency modulation Image color analysis Image reconstruction Semantics Training |
title | Image Inpainting With Learnable Bidirectional Attention Maps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20Inpainting%20With%20Learnable%20Bidirectional%20Attention%20Maps&rft.btitle=2019%20IEEE/CVF%20International%20Conference%20on%20Computer%20Vision%20(ICCV)&rft.au=Xie,%20Chaohao&rft.date=2019-10&rft.spage=8857&rft.epage=8866&rft.pages=8857-8866&rft.eissn=2380-7504&rft_id=info:doi/10.1109/ICCV.2019.00895&rft.eisbn=9781728148038&rft.eisbn_list=1728148030&rft_dat=%3Cieee_CHZPO%3E9010337%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-252154e401d35ecb88a594aefbc68431a0eeefa407fcb2e68bc6e25a866efe5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9010337&rfr_iscdi=true |