Loading…

Entangled-photon quantum cryptography

Summary form only given. Quantum cryptography uses single photons to allow secure distribution of secret key material to sender and receiver, without the possibility of an undetected eavesdropper. In the protocol suggested by Ekert, each photon of a quantum-mechanically entangled pair is sent to the...

Full description

Saved in:
Bibliographic Details
Main Authors: Kwiat, P.G., White, A.G., Peterson, C.G., Naik, D.S., Berglund, A.J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 225
container_title
container_volume
creator Kwiat, P.G.
White, A.G.
Peterson, C.G.
Naik, D.S.
Berglund, A.J.
description Summary form only given. Quantum cryptography uses single photons to allow secure distribution of secret key material to sender and receiver, without the possibility of an undetected eavesdropper. In the protocol suggested by Ekert, each photon of a quantum-mechanically entangled pair is sent to the sender and receiver, who randomly measure the polarization in various bases. If the bases are the same, then sender and receiver will have completely correlated measurement results, which become the shared secret key. Other combinations of measurements are used to test Bell's inequalities, which limit the possible correlations achievable with any local realistic theory. The presence of an intermediate eavesdropper can be readily detected by an inability to violate Bell's inequality. Using the polarization-entangled photon pairs from a novel spontaneous parametric down-conversion source, we have experimentally implemented. Ekert's proposal.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_902026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>902026</ieee_id><sourcerecordid>902026</sourcerecordid><originalsourceid>FETCH-ieee_primary_9020263</originalsourceid><addsrcrecordid>eNpjZuAyNDU1NzUyM7AwZ2HgNDSwNNE1NbM05WDgLS7OMgACSxNDExMDTgZV17ySxLz0nNQU3YKM_JL8PIXC0sS8ktJcheSiyoKS_PSixIKMSh4G1rTEnOJUXijNzSDl5hri7KGbmZqaGl9QlJmbWFQZb2lgZGBkZoxXEgA7zyuF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Entangled-photon quantum cryptography</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kwiat, P.G. ; White, A.G. ; Peterson, C.G. ; Naik, D.S. ; Berglund, A.J.</creator><creatorcontrib>Kwiat, P.G. ; White, A.G. ; Peterson, C.G. ; Naik, D.S. ; Berglund, A.J.</creatorcontrib><description>Summary form only given. Quantum cryptography uses single photons to allow secure distribution of secret key material to sender and receiver, without the possibility of an undetected eavesdropper. In the protocol suggested by Ekert, each photon of a quantum-mechanically entangled pair is sent to the sender and receiver, who randomly measure the polarization in various bases. If the bases are the same, then sender and receiver will have completely correlated measurement results, which become the shared secret key. Other combinations of measurements are used to test Bell's inequalities, which limit the possible correlations achievable with any local realistic theory. The presence of an intermediate eavesdropper can be readily detected by an inability to violate Bell's inequality. Using the polarization-entangled photon pairs from a novel spontaneous parametric down-conversion source, we have experimentally implemented. Ekert's proposal.</description><identifier>ISSN: 1094-5695</identifier><identifier>ISBN: 1557526087</identifier><identifier>ISBN: 9781557526083</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cryptography ; Quantum entanglement</subject><ispartof>Quantum Electronics and Laser Science Conference (QELS 2000). Technical Digest. Postconference Edition. TOPS Vol.40 (IEEE Cat. No.00CH37089), 2000, p.225</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/902026$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/902026$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kwiat, P.G.</creatorcontrib><creatorcontrib>White, A.G.</creatorcontrib><creatorcontrib>Peterson, C.G.</creatorcontrib><creatorcontrib>Naik, D.S.</creatorcontrib><creatorcontrib>Berglund, A.J.</creatorcontrib><title>Entangled-photon quantum cryptography</title><title>Quantum Electronics and Laser Science Conference (QELS 2000). Technical Digest. Postconference Edition. TOPS Vol.40 (IEEE Cat. No.00CH37089)</title><addtitle>QELS</addtitle><description>Summary form only given. Quantum cryptography uses single photons to allow secure distribution of secret key material to sender and receiver, without the possibility of an undetected eavesdropper. In the protocol suggested by Ekert, each photon of a quantum-mechanically entangled pair is sent to the sender and receiver, who randomly measure the polarization in various bases. If the bases are the same, then sender and receiver will have completely correlated measurement results, which become the shared secret key. Other combinations of measurements are used to test Bell's inequalities, which limit the possible correlations achievable with any local realistic theory. The presence of an intermediate eavesdropper can be readily detected by an inability to violate Bell's inequality. Using the polarization-entangled photon pairs from a novel spontaneous parametric down-conversion source, we have experimentally implemented. Ekert's proposal.</description><subject>Cryptography</subject><subject>Quantum entanglement</subject><issn>1094-5695</issn><isbn>1557526087</isbn><isbn>9781557526083</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpjZuAyNDU1NzUyM7AwZ2HgNDSwNNE1NbM05WDgLS7OMgACSxNDExMDTgZV17ySxLz0nNQU3YKM_JL8PIXC0sS8ktJcheSiyoKS_PSixIKMSh4G1rTEnOJUXijNzSDl5hri7KGbmZqaGl9QlJmbWFQZb2lgZGBkZoxXEgA7zyuF</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Kwiat, P.G.</creator><creator>White, A.G.</creator><creator>Peterson, C.G.</creator><creator>Naik, D.S.</creator><creator>Berglund, A.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Entangled-photon quantum cryptography</title><author>Kwiat, P.G. ; White, A.G. ; Peterson, C.G. ; Naik, D.S. ; Berglund, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_9020263</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Cryptography</topic><topic>Quantum entanglement</topic><toplevel>online_resources</toplevel><creatorcontrib>Kwiat, P.G.</creatorcontrib><creatorcontrib>White, A.G.</creatorcontrib><creatorcontrib>Peterson, C.G.</creatorcontrib><creatorcontrib>Naik, D.S.</creatorcontrib><creatorcontrib>Berglund, A.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kwiat, P.G.</au><au>White, A.G.</au><au>Peterson, C.G.</au><au>Naik, D.S.</au><au>Berglund, A.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Entangled-photon quantum cryptography</atitle><btitle>Quantum Electronics and Laser Science Conference (QELS 2000). Technical Digest. Postconference Edition. TOPS Vol.40 (IEEE Cat. No.00CH37089)</btitle><stitle>QELS</stitle><date>2000</date><risdate>2000</risdate><spage>225</spage><pages>225-</pages><issn>1094-5695</issn><isbn>1557526087</isbn><isbn>9781557526083</isbn><abstract>Summary form only given. Quantum cryptography uses single photons to allow secure distribution of secret key material to sender and receiver, without the possibility of an undetected eavesdropper. In the protocol suggested by Ekert, each photon of a quantum-mechanically entangled pair is sent to the sender and receiver, who randomly measure the polarization in various bases. If the bases are the same, then sender and receiver will have completely correlated measurement results, which become the shared secret key. Other combinations of measurements are used to test Bell's inequalities, which limit the possible correlations achievable with any local realistic theory. The presence of an intermediate eavesdropper can be readily detected by an inability to violate Bell's inequality. Using the polarization-entangled photon pairs from a novel spontaneous parametric down-conversion source, we have experimentally implemented. Ekert's proposal.</abstract><pub>IEEE</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-5695
ispartof Quantum Electronics and Laser Science Conference (QELS 2000). Technical Digest. Postconference Edition. TOPS Vol.40 (IEEE Cat. No.00CH37089), 2000, p.225
issn 1094-5695
language eng
recordid cdi_ieee_primary_902026
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cryptography
Quantum entanglement
title Entangled-photon quantum cryptography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Entangled-photon%20quantum%20cryptography&rft.btitle=Quantum%20Electronics%20and%20Laser%20Science%20Conference%20(QELS%202000).%20Technical%20Digest.%20Postconference%20Edition.%20TOPS%20Vol.40%20(IEEE%20Cat.%20No.00CH37089)&rft.au=Kwiat,%20P.G.&rft.date=2000&rft.spage=225&rft.pages=225-&rft.issn=1094-5695&rft.isbn=1557526087&rft.isbn_list=9781557526083&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E902026%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_9020263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=902026&rfr_iscdi=true