Loading…
Entangled-photon quantum cryptography
Summary form only given. Quantum cryptography uses single photons to allow secure distribution of secret key material to sender and receiver, without the possibility of an undetected eavesdropper. In the protocol suggested by Ekert, each photon of a quantum-mechanically entangled pair is sent to the...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | 225 |
container_title | |
container_volume | |
creator | Kwiat, P.G. White, A.G. Peterson, C.G. Naik, D.S. Berglund, A.J. |
description | Summary form only given. Quantum cryptography uses single photons to allow secure distribution of secret key material to sender and receiver, without the possibility of an undetected eavesdropper. In the protocol suggested by Ekert, each photon of a quantum-mechanically entangled pair is sent to the sender and receiver, who randomly measure the polarization in various bases. If the bases are the same, then sender and receiver will have completely correlated measurement results, which become the shared secret key. Other combinations of measurements are used to test Bell's inequalities, which limit the possible correlations achievable with any local realistic theory. The presence of an intermediate eavesdropper can be readily detected by an inability to violate Bell's inequality. Using the polarization-entangled photon pairs from a novel spontaneous parametric down-conversion source, we have experimentally implemented. Ekert's proposal. |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_902026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>902026</ieee_id><sourcerecordid>902026</sourcerecordid><originalsourceid>FETCH-ieee_primary_9020263</originalsourceid><addsrcrecordid>eNpjZuAyNDU1NzUyM7AwZ2HgNDSwNNE1NbM05WDgLS7OMgACSxNDExMDTgZV17ySxLz0nNQU3YKM_JL8PIXC0sS8ktJcheSiyoKS_PSixIKMSh4G1rTEnOJUXijNzSDl5hri7KGbmZqaGl9QlJmbWFQZb2lgZGBkZoxXEgA7zyuF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Entangled-photon quantum cryptography</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kwiat, P.G. ; White, A.G. ; Peterson, C.G. ; Naik, D.S. ; Berglund, A.J.</creator><creatorcontrib>Kwiat, P.G. ; White, A.G. ; Peterson, C.G. ; Naik, D.S. ; Berglund, A.J.</creatorcontrib><description>Summary form only given. Quantum cryptography uses single photons to allow secure distribution of secret key material to sender and receiver, without the possibility of an undetected eavesdropper. In the protocol suggested by Ekert, each photon of a quantum-mechanically entangled pair is sent to the sender and receiver, who randomly measure the polarization in various bases. If the bases are the same, then sender and receiver will have completely correlated measurement results, which become the shared secret key. Other combinations of measurements are used to test Bell's inequalities, which limit the possible correlations achievable with any local realistic theory. The presence of an intermediate eavesdropper can be readily detected by an inability to violate Bell's inequality. Using the polarization-entangled photon pairs from a novel spontaneous parametric down-conversion source, we have experimentally implemented. Ekert's proposal.</description><identifier>ISSN: 1094-5695</identifier><identifier>ISBN: 1557526087</identifier><identifier>ISBN: 9781557526083</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cryptography ; Quantum entanglement</subject><ispartof>Quantum Electronics and Laser Science Conference (QELS 2000). Technical Digest. Postconference Edition. TOPS Vol.40 (IEEE Cat. No.00CH37089), 2000, p.225</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/902026$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/902026$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kwiat, P.G.</creatorcontrib><creatorcontrib>White, A.G.</creatorcontrib><creatorcontrib>Peterson, C.G.</creatorcontrib><creatorcontrib>Naik, D.S.</creatorcontrib><creatorcontrib>Berglund, A.J.</creatorcontrib><title>Entangled-photon quantum cryptography</title><title>Quantum Electronics and Laser Science Conference (QELS 2000). Technical Digest. Postconference Edition. TOPS Vol.40 (IEEE Cat. No.00CH37089)</title><addtitle>QELS</addtitle><description>Summary form only given. Quantum cryptography uses single photons to allow secure distribution of secret key material to sender and receiver, without the possibility of an undetected eavesdropper. In the protocol suggested by Ekert, each photon of a quantum-mechanically entangled pair is sent to the sender and receiver, who randomly measure the polarization in various bases. If the bases are the same, then sender and receiver will have completely correlated measurement results, which become the shared secret key. Other combinations of measurements are used to test Bell's inequalities, which limit the possible correlations achievable with any local realistic theory. The presence of an intermediate eavesdropper can be readily detected by an inability to violate Bell's inequality. Using the polarization-entangled photon pairs from a novel spontaneous parametric down-conversion source, we have experimentally implemented. Ekert's proposal.</description><subject>Cryptography</subject><subject>Quantum entanglement</subject><issn>1094-5695</issn><isbn>1557526087</isbn><isbn>9781557526083</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpjZuAyNDU1NzUyM7AwZ2HgNDSwNNE1NbM05WDgLS7OMgACSxNDExMDTgZV17ySxLz0nNQU3YKM_JL8PIXC0sS8ktJcheSiyoKS_PSixIKMSh4G1rTEnOJUXijNzSDl5hri7KGbmZqaGl9QlJmbWFQZb2lgZGBkZoxXEgA7zyuF</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Kwiat, P.G.</creator><creator>White, A.G.</creator><creator>Peterson, C.G.</creator><creator>Naik, D.S.</creator><creator>Berglund, A.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Entangled-photon quantum cryptography</title><author>Kwiat, P.G. ; White, A.G. ; Peterson, C.G. ; Naik, D.S. ; Berglund, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_9020263</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Cryptography</topic><topic>Quantum entanglement</topic><toplevel>online_resources</toplevel><creatorcontrib>Kwiat, P.G.</creatorcontrib><creatorcontrib>White, A.G.</creatorcontrib><creatorcontrib>Peterson, C.G.</creatorcontrib><creatorcontrib>Naik, D.S.</creatorcontrib><creatorcontrib>Berglund, A.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kwiat, P.G.</au><au>White, A.G.</au><au>Peterson, C.G.</au><au>Naik, D.S.</au><au>Berglund, A.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Entangled-photon quantum cryptography</atitle><btitle>Quantum Electronics and Laser Science Conference (QELS 2000). Technical Digest. Postconference Edition. TOPS Vol.40 (IEEE Cat. No.00CH37089)</btitle><stitle>QELS</stitle><date>2000</date><risdate>2000</risdate><spage>225</spage><pages>225-</pages><issn>1094-5695</issn><isbn>1557526087</isbn><isbn>9781557526083</isbn><abstract>Summary form only given. Quantum cryptography uses single photons to allow secure distribution of secret key material to sender and receiver, without the possibility of an undetected eavesdropper. In the protocol suggested by Ekert, each photon of a quantum-mechanically entangled pair is sent to the sender and receiver, who randomly measure the polarization in various bases. If the bases are the same, then sender and receiver will have completely correlated measurement results, which become the shared secret key. Other combinations of measurements are used to test Bell's inequalities, which limit the possible correlations achievable with any local realistic theory. The presence of an intermediate eavesdropper can be readily detected by an inability to violate Bell's inequality. Using the polarization-entangled photon pairs from a novel spontaneous parametric down-conversion source, we have experimentally implemented. Ekert's proposal.</abstract><pub>IEEE</pub></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-5695 |
ispartof | Quantum Electronics and Laser Science Conference (QELS 2000). Technical Digest. Postconference Edition. TOPS Vol.40 (IEEE Cat. No.00CH37089), 2000, p.225 |
issn | 1094-5695 |
language | eng |
recordid | cdi_ieee_primary_902026 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cryptography Quantum entanglement |
title | Entangled-photon quantum cryptography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Entangled-photon%20quantum%20cryptography&rft.btitle=Quantum%20Electronics%20and%20Laser%20Science%20Conference%20(QELS%202000).%20Technical%20Digest.%20Postconference%20Edition.%20TOPS%20Vol.40%20(IEEE%20Cat.%20No.00CH37089)&rft.au=Kwiat,%20P.G.&rft.date=2000&rft.spage=225&rft.pages=225-&rft.issn=1094-5695&rft.isbn=1557526087&rft.isbn_list=9781557526083&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E902026%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_9020263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=902026&rfr_iscdi=true |