Loading…
The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture
GrassClover is a diverse image and biomass dataset collected in an outdoor agricultural setting. The images contain dense populations of grass and clover mixtures with heavy occlusions and occurrences of weeds. Fertilization and treatment of mixed crops depend on the local species composition. There...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-ad0e23a3d6a6903c8f9e6622a1295463d425f299eac6ea1c4a56cca704a4da013 |
---|---|
cites | |
container_end_page | 2684 |
container_issue | |
container_start_page | 2676 |
container_title | |
container_volume | |
creator | Skovsen, Soren Dyrmann, Mads Mortensen, Anders K. Laursen, Morten S. Gislum, Rene Eriksen, Jorgen Farkhani, Sadaf Karstoft, Henrik Jorgensen, Rasmus N. |
description | GrassClover is a diverse image and biomass dataset collected in an outdoor agricultural setting. The images contain dense populations of grass and clover mixtures with heavy occlusions and occurrences of weeds. Fertilization and treatment of mixed crops depend on the local species composition. Therefore, the overall challenge is related to predicting the species composition in the canopy image and in the biomass. The dataset is collected with three different acquisition systems with ground sampling distances of 4-8 px/mm. The observed mixed crops vary both in setting (field vs plot trial), seed compositions, yield, years since establishment and time of the season. Synthetic training images with pixel-wise hierarchical and instance labels are provided for supervised training. 31 600 unlabeled images are additionally provided for pre-training, semi-supervised training or unsupervised training. Furthermore, this paper provides challenges of semantic segmentation and prediction of the biomass compositions and a baseline model for this dataset. |
doi_str_mv | 10.1109/CVPRW.2019.00325 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9025377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9025377</ieee_id><sourcerecordid>9025377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ad0e23a3d6a6903c8f9e6622a1295463d425f299eac6ea1c4a56cca704a4da013</originalsourceid><addsrcrecordid>eNotzEFLwzAUwPEoCM65u-AlX6Dz5aVJl-Ooug0Gitv0OB_paxfpupF0wr69gp7-hx_8hbhTMFYK3EP5_vr2MUZQbgyg0VyIG1XgRKEBay7FAJWFrDDKXotRSl8AoGBijNMD8bnesZxFSqlsD98c5WJPDctH6ilxL-tDlCveU9cHL6mr5DxwpOh3wVMrV0f2gZPcdBXH1P966BoZOjltYvCntj9FvhVXNbWJR_8dis3z07qcZ8uX2aKcLjOPDvuMKmDUpCtL1oH2k9qxtYik0Jnc6ipHU6NzTN4yKZ-Tsd5TATnlFYHSQ3H_9w3MvD3GsKd43jpAo4tC_wALrlUN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture</title><source>IEEE Xplore All Conference Series</source><creator>Skovsen, Soren ; Dyrmann, Mads ; Mortensen, Anders K. ; Laursen, Morten S. ; Gislum, Rene ; Eriksen, Jorgen ; Farkhani, Sadaf ; Karstoft, Henrik ; Jorgensen, Rasmus N.</creator><creatorcontrib>Skovsen, Soren ; Dyrmann, Mads ; Mortensen, Anders K. ; Laursen, Morten S. ; Gislum, Rene ; Eriksen, Jorgen ; Farkhani, Sadaf ; Karstoft, Henrik ; Jorgensen, Rasmus N.</creatorcontrib><description>GrassClover is a diverse image and biomass dataset collected in an outdoor agricultural setting. The images contain dense populations of grass and clover mixtures with heavy occlusions and occurrences of weeds. Fertilization and treatment of mixed crops depend on the local species composition. Therefore, the overall challenge is related to predicting the species composition in the canopy image and in the biomass. The dataset is collected with three different acquisition systems with ground sampling distances of 4-8 px/mm. The observed mixed crops vary both in setting (field vs plot trial), seed compositions, yield, years since establishment and time of the season. Synthetic training images with pixel-wise hierarchical and instance labels are provided for supervised training. 31 600 unlabeled images are additionally provided for pre-training, semi-supervised training or unsupervised training. Furthermore, this paper provides challenges of semantic segmentation and prediction of the biomass compositions and a baseline model for this dataset.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 1728125065</identifier><identifier>EISBN: 9781728125060</identifier><identifier>DOI: 10.1109/CVPRW.2019.00325</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Agriculture ; Biomass ; Cameras ; Image segmentation ; Semantics ; Soil ; Training</subject><ispartof>2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2019, p.2676-2684</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ad0e23a3d6a6903c8f9e6622a1295463d425f299eac6ea1c4a56cca704a4da013</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9025377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9025377$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Skovsen, Soren</creatorcontrib><creatorcontrib>Dyrmann, Mads</creatorcontrib><creatorcontrib>Mortensen, Anders K.</creatorcontrib><creatorcontrib>Laursen, Morten S.</creatorcontrib><creatorcontrib>Gislum, Rene</creatorcontrib><creatorcontrib>Eriksen, Jorgen</creatorcontrib><creatorcontrib>Farkhani, Sadaf</creatorcontrib><creatorcontrib>Karstoft, Henrik</creatorcontrib><creatorcontrib>Jorgensen, Rasmus N.</creatorcontrib><title>The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture</title><title>2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>GrassClover is a diverse image and biomass dataset collected in an outdoor agricultural setting. The images contain dense populations of grass and clover mixtures with heavy occlusions and occurrences of weeds. Fertilization and treatment of mixed crops depend on the local species composition. Therefore, the overall challenge is related to predicting the species composition in the canopy image and in the biomass. The dataset is collected with three different acquisition systems with ground sampling distances of 4-8 px/mm. The observed mixed crops vary both in setting (field vs plot trial), seed compositions, yield, years since establishment and time of the season. Synthetic training images with pixel-wise hierarchical and instance labels are provided for supervised training. 31 600 unlabeled images are additionally provided for pre-training, semi-supervised training or unsupervised training. Furthermore, this paper provides challenges of semantic segmentation and prediction of the biomass compositions and a baseline model for this dataset.</description><subject>Agriculture</subject><subject>Biomass</subject><subject>Cameras</subject><subject>Image segmentation</subject><subject>Semantics</subject><subject>Soil</subject><subject>Training</subject><issn>2160-7516</issn><isbn>1728125065</isbn><isbn>9781728125060</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzEFLwzAUwPEoCM65u-AlX6Dz5aVJl-Ooug0Gitv0OB_paxfpupF0wr69gp7-hx_8hbhTMFYK3EP5_vr2MUZQbgyg0VyIG1XgRKEBay7FAJWFrDDKXotRSl8AoGBijNMD8bnesZxFSqlsD98c5WJPDctH6ilxL-tDlCveU9cHL6mr5DxwpOh3wVMrV0f2gZPcdBXH1P966BoZOjltYvCntj9FvhVXNbWJR_8dis3z07qcZ8uX2aKcLjOPDvuMKmDUpCtL1oH2k9qxtYik0Jnc6ipHU6NzTN4yKZ-Tsd5TATnlFYHSQ3H_9w3MvD3GsKd43jpAo4tC_wALrlUN</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Skovsen, Soren</creator><creator>Dyrmann, Mads</creator><creator>Mortensen, Anders K.</creator><creator>Laursen, Morten S.</creator><creator>Gislum, Rene</creator><creator>Eriksen, Jorgen</creator><creator>Farkhani, Sadaf</creator><creator>Karstoft, Henrik</creator><creator>Jorgensen, Rasmus N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20190601</creationdate><title>The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture</title><author>Skovsen, Soren ; Dyrmann, Mads ; Mortensen, Anders K. ; Laursen, Morten S. ; Gislum, Rene ; Eriksen, Jorgen ; Farkhani, Sadaf ; Karstoft, Henrik ; Jorgensen, Rasmus N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ad0e23a3d6a6903c8f9e6622a1295463d425f299eac6ea1c4a56cca704a4da013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agriculture</topic><topic>Biomass</topic><topic>Cameras</topic><topic>Image segmentation</topic><topic>Semantics</topic><topic>Soil</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Skovsen, Soren</creatorcontrib><creatorcontrib>Dyrmann, Mads</creatorcontrib><creatorcontrib>Mortensen, Anders K.</creatorcontrib><creatorcontrib>Laursen, Morten S.</creatorcontrib><creatorcontrib>Gislum, Rene</creatorcontrib><creatorcontrib>Eriksen, Jorgen</creatorcontrib><creatorcontrib>Farkhani, Sadaf</creatorcontrib><creatorcontrib>Karstoft, Henrik</creatorcontrib><creatorcontrib>Jorgensen, Rasmus N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Skovsen, Soren</au><au>Dyrmann, Mads</au><au>Mortensen, Anders K.</au><au>Laursen, Morten S.</au><au>Gislum, Rene</au><au>Eriksen, Jorgen</au><au>Farkhani, Sadaf</au><au>Karstoft, Henrik</au><au>Jorgensen, Rasmus N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture</atitle><btitle>2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2019-06-01</date><risdate>2019</risdate><spage>2676</spage><epage>2684</epage><pages>2676-2684</pages><eissn>2160-7516</eissn><eisbn>1728125065</eisbn><eisbn>9781728125060</eisbn><coden>IEEPAD</coden><abstract>GrassClover is a diverse image and biomass dataset collected in an outdoor agricultural setting. The images contain dense populations of grass and clover mixtures with heavy occlusions and occurrences of weeds. Fertilization and treatment of mixed crops depend on the local species composition. Therefore, the overall challenge is related to predicting the species composition in the canopy image and in the biomass. The dataset is collected with three different acquisition systems with ground sampling distances of 4-8 px/mm. The observed mixed crops vary both in setting (field vs plot trial), seed compositions, yield, years since establishment and time of the season. Synthetic training images with pixel-wise hierarchical and instance labels are provided for supervised training. 31 600 unlabeled images are additionally provided for pre-training, semi-supervised training or unsupervised training. Furthermore, this paper provides challenges of semantic segmentation and prediction of the biomass compositions and a baseline model for this dataset.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW.2019.00325</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2160-7516 |
ispartof | 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2019, p.2676-2684 |
issn | 2160-7516 |
language | eng |
recordid | cdi_ieee_primary_9025377 |
source | IEEE Xplore All Conference Series |
subjects | Agriculture Biomass Cameras Image segmentation Semantics Soil Training |
title | The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T21%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20GrassClover%20Image%20Dataset%20for%20Semantic%20and%20Hierarchical%20Species%20Understanding%20in%20Agriculture&rft.btitle=2019%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Skovsen,%20Soren&rft.date=2019-06-01&rft.spage=2676&rft.epage=2684&rft.pages=2676-2684&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW.2019.00325&rft.eisbn=1728125065&rft.eisbn_list=9781728125060&rft_dat=%3Cieee_CHZPO%3E9025377%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-ad0e23a3d6a6903c8f9e6622a1295463d425f299eac6ea1c4a56cca704a4da013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9025377&rfr_iscdi=true |