Loading…
Multi-Level 3D CNN for Learning Multi-Scale Spatial Features
3D object recognition accuracy can be improved by learning the multi-scale spatial features from 3D spatial geometric representations of objects such as point clouds, 3D models, surfaces, and RGB-D data. Current deep learning approaches learn such features either using structured data representation...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1156 |
container_issue | |
container_start_page | 1152 |
container_title | |
container_volume | |
creator | Ghadai, Sambit Lee, Xian Yeow Balu, Aditya Sarkar, Soumik Krishnamurthy, Adarsh |
description | 3D object recognition accuracy can be improved by learning the multi-scale spatial features from 3D spatial geometric representations of objects such as point clouds, 3D models, surfaces, and RGB-D data. Current deep learning approaches learn such features either using structured data representations (voxel grids and octrees) or from unstructured representations (graphs and point clouds). Learning features from such structured representations is limited by the restriction on resolution and tree depth while unstructured representations creates a challenge due to non-uniformity among data samples. In this paper, we propose an end-to-end multi-level learning approach on a multi-level voxel grid to overcome these drawbacks. To demonstrate the utility of the proposed multi-level learning, we use a multi-level voxel representation of 3D objects to perform object recognition. The multi-level voxel representation consists of a coarse voxel grid that contains volumetric information of the 3D object. In addition, each voxel in the coarse grid that contains a portion of the object boundary is subdivided into multiple fine-level voxel grids. The performance of our multi-level learning algorithm for object recognition is comparable to dense voxel representations while using significantly lower memory. |
doi_str_mv | 10.1109/CVPRW.2019.00150 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9025500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9025500</ieee_id><sourcerecordid>9025500</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-5ee5cb1ebccddf39fdfb2af49435fab2f471ddddb8d822f26af8f798a4660eb03</originalsourceid><addsrcrecordid>eNotjM1Kw0AURkdBsNbuBTfzAon3zuROZsCNRKtCrGL9WZaZ5I6MxFqSVPDtLdRvcxbn8AlxhpAjgruo3p6e33MF6HIAJDgQJ1gqi4rA0KGYKDSQlYTmWMyG4RN2EVgipyfi8mHbjSmr-Yc7qa9ltVjI-N3Lmn2_TusPuffLxncslxs_Jt_JOftx2_NwKo6i7wae_XMqXuc3L9VdVj_e3ldXdZYU6DEjZmoCcmiato3axTYG5WPhCk3RBxWLEtvdgm2tUlEZH20snfWFMcAB9FSc738TM682ffry_e_KgSIC0H_o7Ugx</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-Level 3D CNN for Learning Multi-Scale Spatial Features</title><source>IEEE Xplore All Conference Series</source><creator>Ghadai, Sambit ; Lee, Xian Yeow ; Balu, Aditya ; Sarkar, Soumik ; Krishnamurthy, Adarsh</creator><creatorcontrib>Ghadai, Sambit ; Lee, Xian Yeow ; Balu, Aditya ; Sarkar, Soumik ; Krishnamurthy, Adarsh</creatorcontrib><description>3D object recognition accuracy can be improved by learning the multi-scale spatial features from 3D spatial geometric representations of objects such as point clouds, 3D models, surfaces, and RGB-D data. Current deep learning approaches learn such features either using structured data representations (voxel grids and octrees) or from unstructured representations (graphs and point clouds). Learning features from such structured representations is limited by the restriction on resolution and tree depth while unstructured representations creates a challenge due to non-uniformity among data samples. In this paper, we propose an end-to-end multi-level learning approach on a multi-level voxel grid to overcome these drawbacks. To demonstrate the utility of the proposed multi-level learning, we use a multi-level voxel representation of 3D objects to perform object recognition. The multi-level voxel representation consists of a coarse voxel grid that contains volumetric information of the 3D object. In addition, each voxel in the coarse grid that contains a portion of the object boundary is subdivided into multiple fine-level voxel grids. The performance of our multi-level learning algorithm for object recognition is comparable to dense voxel representations while using significantly lower memory.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 1728125065</identifier><identifier>EISBN: 9781728125060</identifier><identifier>DOI: 10.1109/CVPRW.2019.00150</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Machine learning ; Memory management ; Object recognition ; Solid modeling ; Spatial resolution ; Three-dimensional displays ; Training</subject><ispartof>2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2019, p.1152-1156</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9025500$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9025500$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ghadai, Sambit</creatorcontrib><creatorcontrib>Lee, Xian Yeow</creatorcontrib><creatorcontrib>Balu, Aditya</creatorcontrib><creatorcontrib>Sarkar, Soumik</creatorcontrib><creatorcontrib>Krishnamurthy, Adarsh</creatorcontrib><title>Multi-Level 3D CNN for Learning Multi-Scale Spatial Features</title><title>2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>3D object recognition accuracy can be improved by learning the multi-scale spatial features from 3D spatial geometric representations of objects such as point clouds, 3D models, surfaces, and RGB-D data. Current deep learning approaches learn such features either using structured data representations (voxel grids and octrees) or from unstructured representations (graphs and point clouds). Learning features from such structured representations is limited by the restriction on resolution and tree depth while unstructured representations creates a challenge due to non-uniformity among data samples. In this paper, we propose an end-to-end multi-level learning approach on a multi-level voxel grid to overcome these drawbacks. To demonstrate the utility of the proposed multi-level learning, we use a multi-level voxel representation of 3D objects to perform object recognition. The multi-level voxel representation consists of a coarse voxel grid that contains volumetric information of the 3D object. In addition, each voxel in the coarse grid that contains a portion of the object boundary is subdivided into multiple fine-level voxel grids. The performance of our multi-level learning algorithm for object recognition is comparable to dense voxel representations while using significantly lower memory.</description><subject>Machine learning</subject><subject>Memory management</subject><subject>Object recognition</subject><subject>Solid modeling</subject><subject>Spatial resolution</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>2160-7516</issn><isbn>1728125065</isbn><isbn>9781728125060</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM1Kw0AURkdBsNbuBTfzAon3zuROZsCNRKtCrGL9WZaZ5I6MxFqSVPDtLdRvcxbn8AlxhpAjgruo3p6e33MF6HIAJDgQJ1gqi4rA0KGYKDSQlYTmWMyG4RN2EVgipyfi8mHbjSmr-Yc7qa9ltVjI-N3Lmn2_TusPuffLxncslxs_Jt_JOftx2_NwKo6i7wae_XMqXuc3L9VdVj_e3ldXdZYU6DEjZmoCcmiato3axTYG5WPhCk3RBxWLEtvdgm2tUlEZH20snfWFMcAB9FSc738TM682ffry_e_KgSIC0H_o7Ugx</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Ghadai, Sambit</creator><creator>Lee, Xian Yeow</creator><creator>Balu, Aditya</creator><creator>Sarkar, Soumik</creator><creator>Krishnamurthy, Adarsh</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201906</creationdate><title>Multi-Level 3D CNN for Learning Multi-Scale Spatial Features</title><author>Ghadai, Sambit ; Lee, Xian Yeow ; Balu, Aditya ; Sarkar, Soumik ; Krishnamurthy, Adarsh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-5ee5cb1ebccddf39fdfb2af49435fab2f471ddddb8d822f26af8f798a4660eb03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Machine learning</topic><topic>Memory management</topic><topic>Object recognition</topic><topic>Solid modeling</topic><topic>Spatial resolution</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghadai, Sambit</creatorcontrib><creatorcontrib>Lee, Xian Yeow</creatorcontrib><creatorcontrib>Balu, Aditya</creatorcontrib><creatorcontrib>Sarkar, Soumik</creatorcontrib><creatorcontrib>Krishnamurthy, Adarsh</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ghadai, Sambit</au><au>Lee, Xian Yeow</au><au>Balu, Aditya</au><au>Sarkar, Soumik</au><au>Krishnamurthy, Adarsh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-Level 3D CNN for Learning Multi-Scale Spatial Features</atitle><btitle>2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2019-06</date><risdate>2019</risdate><spage>1152</spage><epage>1156</epage><pages>1152-1156</pages><eissn>2160-7516</eissn><eisbn>1728125065</eisbn><eisbn>9781728125060</eisbn><coden>IEEPAD</coden><abstract>3D object recognition accuracy can be improved by learning the multi-scale spatial features from 3D spatial geometric representations of objects such as point clouds, 3D models, surfaces, and RGB-D data. Current deep learning approaches learn such features either using structured data representations (voxel grids and octrees) or from unstructured representations (graphs and point clouds). Learning features from such structured representations is limited by the restriction on resolution and tree depth while unstructured representations creates a challenge due to non-uniformity among data samples. In this paper, we propose an end-to-end multi-level learning approach on a multi-level voxel grid to overcome these drawbacks. To demonstrate the utility of the proposed multi-level learning, we use a multi-level voxel representation of 3D objects to perform object recognition. The multi-level voxel representation consists of a coarse voxel grid that contains volumetric information of the 3D object. In addition, each voxel in the coarse grid that contains a portion of the object boundary is subdivided into multiple fine-level voxel grids. The performance of our multi-level learning algorithm for object recognition is comparable to dense voxel representations while using significantly lower memory.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW.2019.00150</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2160-7516 |
ispartof | 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2019, p.1152-1156 |
issn | 2160-7516 |
language | eng |
recordid | cdi_ieee_primary_9025500 |
source | IEEE Xplore All Conference Series |
subjects | Machine learning Memory management Object recognition Solid modeling Spatial resolution Three-dimensional displays Training |
title | Multi-Level 3D CNN for Learning Multi-Scale Spatial Features |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-Level%203D%20CNN%20for%20Learning%20Multi-Scale%20Spatial%20Features&rft.btitle=2019%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Ghadai,%20Sambit&rft.date=2019-06&rft.spage=1152&rft.epage=1156&rft.pages=1152-1156&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW.2019.00150&rft.eisbn=1728125065&rft.eisbn_list=9781728125060&rft_dat=%3Cieee_CHZPO%3E9025500%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-5ee5cb1ebccddf39fdfb2af49435fab2f471ddddb8d822f26af8f798a4660eb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9025500&rfr_iscdi=true |