Loading…

Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories With GANs

This paper proposes a novel approach for predicting the motion of pedestrians interacting with others. It uses a Generative Adversarial Network (GAN) to sample plausible predictions for any agent in the scene. As GANs are very susceptible to mode collapsing and dropping, we show that the recently pr...

Full description

Saved in:
Bibliographic Details
Main Authors: Amirian, Javad, Hayet, Jean-Bernard, Pettre, Julien
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-84a23c37751b37156e75d0d80445282f6d472660fc51c0e16af93a1f39fbb8173
cites
container_end_page 2972
container_issue
container_start_page 2964
container_title
container_volume
creator Amirian, Javad
Hayet, Jean-Bernard
Pettre, Julien
description This paper proposes a novel approach for predicting the motion of pedestrians interacting with others. It uses a Generative Adversarial Network (GAN) to sample plausible predictions for any agent in the scene. As GANs are very susceptible to mode collapsing and dropping, we show that the recently proposed Info-GAN allows dramatic improvements in multi-modal pedestrian trajectory prediction to avoid these issues. We also left out L2-loss in training the generator, unlike some previous works, because it causes serious mode collapsing though faster convergence. We show through experiments on real and synthetic data that the proposed method leads to generate more diverse samples and to preserve the modes of the predictive distribution. In particular, to prove this claim, we have designed a toy example dataset of trajectories that can be used to assess the performance of different methods in preserving the predictive distribution modes.
doi_str_mv 10.1109/CVPRW.2019.00359
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9025550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9025550</ieee_id><sourcerecordid>9025550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-84a23c37751b37156e75d0d80445282f6d472660fc51c0e16af93a1f39fbb8173</originalsourceid><addsrcrecordid>eNotjlFLwzAURqMgOOfeBV_yB1rvTXqTxrdR3RQ6HTrd40jbRDNmK033sH_vRJ8-OAcOH2NXCCkimJviffmyTgWgSQEkmRN2gVrkKAgUnbKRQAWJJlTnbBLjFgAQciIjR2z12tXB7vjaHuItL53t29B-8MV-N4Rk0TVHdRfi0IdqP4SujbzzfOka94tsy1e93bp66PrgIl-H4ZPPp0_xkp15u4tu8r9j9ja7XxUPSfk8fyymZVILI4Ykz6yQtdTHZ5XUSMppaqDJIctI5MKrJtNCKfA1YQ0OlfVGWvTS-KrKUcsxu_7rBufc5rsPX7Y_bAwIIgL5Ay2fT1E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories With GANs</title><source>IEEE Xplore All Conference Series</source><creator>Amirian, Javad ; Hayet, Jean-Bernard ; Pettre, Julien</creator><creatorcontrib>Amirian, Javad ; Hayet, Jean-Bernard ; Pettre, Julien</creatorcontrib><description>This paper proposes a novel approach for predicting the motion of pedestrians interacting with others. It uses a Generative Adversarial Network (GAN) to sample plausible predictions for any agent in the scene. As GANs are very susceptible to mode collapsing and dropping, we show that the recently proposed Info-GAN allows dramatic improvements in multi-modal pedestrian trajectory prediction to avoid these issues. We also left out L2-loss in training the generator, unlike some previous works, because it causes serious mode collapsing though faster convergence. We show through experiments on real and synthetic data that the proposed method leads to generate more diverse samples and to preserve the modes of the predictive distribution. In particular, to prove this claim, we have designed a toy example dataset of trajectories that can be used to assess the performance of different methods in preserving the predictive distribution modes.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 1728125065</identifier><identifier>EISBN: 9781728125060</identifier><identifier>DOI: 10.1109/CVPRW.2019.00359</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Encoding ; Gallium nitride ; Generative adversarial networks ; Generators ; Mathematical model ; Trajectory</subject><ispartof>2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2019, p.2964-2972</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-84a23c37751b37156e75d0d80445282f6d472660fc51c0e16af93a1f39fbb8173</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9025550$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,23911,23912,25121,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9025550$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amirian, Javad</creatorcontrib><creatorcontrib>Hayet, Jean-Bernard</creatorcontrib><creatorcontrib>Pettre, Julien</creatorcontrib><title>Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories With GANs</title><title>2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>This paper proposes a novel approach for predicting the motion of pedestrians interacting with others. It uses a Generative Adversarial Network (GAN) to sample plausible predictions for any agent in the scene. As GANs are very susceptible to mode collapsing and dropping, we show that the recently proposed Info-GAN allows dramatic improvements in multi-modal pedestrian trajectory prediction to avoid these issues. We also left out L2-loss in training the generator, unlike some previous works, because it causes serious mode collapsing though faster convergence. We show through experiments on real and synthetic data that the proposed method leads to generate more diverse samples and to preserve the modes of the predictive distribution. In particular, to prove this claim, we have designed a toy example dataset of trajectories that can be used to assess the performance of different methods in preserving the predictive distribution modes.</description><subject>Artificial neural networks</subject><subject>Encoding</subject><subject>Gallium nitride</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Mathematical model</subject><subject>Trajectory</subject><issn>2160-7516</issn><isbn>1728125065</isbn><isbn>9781728125060</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjlFLwzAURqMgOOfeBV_yB1rvTXqTxrdR3RQ6HTrd40jbRDNmK033sH_vRJ8-OAcOH2NXCCkimJviffmyTgWgSQEkmRN2gVrkKAgUnbKRQAWJJlTnbBLjFgAQciIjR2z12tXB7vjaHuItL53t29B-8MV-N4Rk0TVHdRfi0IdqP4SujbzzfOka94tsy1e93bp66PrgIl-H4ZPPp0_xkp15u4tu8r9j9ja7XxUPSfk8fyymZVILI4Ykz6yQtdTHZ5XUSMppaqDJIctI5MKrJtNCKfA1YQ0OlfVGWvTS-KrKUcsxu_7rBufc5rsPX7Y_bAwIIgL5Ay2fT1E</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Amirian, Javad</creator><creator>Hayet, Jean-Bernard</creator><creator>Pettre, Julien</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20190601</creationdate><title>Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories With GANs</title><author>Amirian, Javad ; Hayet, Jean-Bernard ; Pettre, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-84a23c37751b37156e75d0d80445282f6d472660fc51c0e16af93a1f39fbb8173</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Encoding</topic><topic>Gallium nitride</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Mathematical model</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Amirian, Javad</creatorcontrib><creatorcontrib>Hayet, Jean-Bernard</creatorcontrib><creatorcontrib>Pettre, Julien</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amirian, Javad</au><au>Hayet, Jean-Bernard</au><au>Pettre, Julien</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories With GANs</atitle><btitle>2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2019-06-01</date><risdate>2019</risdate><spage>2964</spage><epage>2972</epage><pages>2964-2972</pages><eissn>2160-7516</eissn><eisbn>1728125065</eisbn><eisbn>9781728125060</eisbn><coden>IEEPAD</coden><abstract>This paper proposes a novel approach for predicting the motion of pedestrians interacting with others. It uses a Generative Adversarial Network (GAN) to sample plausible predictions for any agent in the scene. As GANs are very susceptible to mode collapsing and dropping, we show that the recently proposed Info-GAN allows dramatic improvements in multi-modal pedestrian trajectory prediction to avoid these issues. We also left out L2-loss in training the generator, unlike some previous works, because it causes serious mode collapsing though faster convergence. We show through experiments on real and synthetic data that the proposed method leads to generate more diverse samples and to preserve the modes of the predictive distribution. In particular, to prove this claim, we have designed a toy example dataset of trajectories that can be used to assess the performance of different methods in preserving the predictive distribution modes.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW.2019.00359</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2160-7516
ispartof 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2019, p.2964-2972
issn 2160-7516
language eng
recordid cdi_ieee_primary_9025550
source IEEE Xplore All Conference Series
subjects Artificial neural networks
Encoding
Gallium nitride
Generative adversarial networks
Generators
Mathematical model
Trajectory
title Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories With GANs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Social%20Ways:%20Learning%20Multi-Modal%20Distributions%20of%20Pedestrian%20Trajectories%20With%20GANs&rft.btitle=2019%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Amirian,%20Javad&rft.date=2019-06-01&rft.spage=2964&rft.epage=2972&rft.pages=2964-2972&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW.2019.00359&rft.eisbn=1728125065&rft.eisbn_list=9781728125060&rft_dat=%3Cieee_CHZPO%3E9025550%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-84a23c37751b37156e75d0d80445282f6d472660fc51c0e16af93a1f39fbb8173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9025550&rfr_iscdi=true