Loading…
Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories With GANs
This paper proposes a novel approach for predicting the motion of pedestrians interacting with others. It uses a Generative Adversarial Network (GAN) to sample plausible predictions for any agent in the scene. As GANs are very susceptible to mode collapsing and dropping, we show that the recently pr...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-84a23c37751b37156e75d0d80445282f6d472660fc51c0e16af93a1f39fbb8173 |
---|---|
cites | |
container_end_page | 2972 |
container_issue | |
container_start_page | 2964 |
container_title | |
container_volume | |
creator | Amirian, Javad Hayet, Jean-Bernard Pettre, Julien |
description | This paper proposes a novel approach for predicting the motion of pedestrians interacting with others. It uses a Generative Adversarial Network (GAN) to sample plausible predictions for any agent in the scene. As GANs are very susceptible to mode collapsing and dropping, we show that the recently proposed Info-GAN allows dramatic improvements in multi-modal pedestrian trajectory prediction to avoid these issues. We also left out L2-loss in training the generator, unlike some previous works, because it causes serious mode collapsing though faster convergence. We show through experiments on real and synthetic data that the proposed method leads to generate more diverse samples and to preserve the modes of the predictive distribution. In particular, to prove this claim, we have designed a toy example dataset of trajectories that can be used to assess the performance of different methods in preserving the predictive distribution modes. |
doi_str_mv | 10.1109/CVPRW.2019.00359 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9025550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9025550</ieee_id><sourcerecordid>9025550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-84a23c37751b37156e75d0d80445282f6d472660fc51c0e16af93a1f39fbb8173</originalsourceid><addsrcrecordid>eNotjlFLwzAURqMgOOfeBV_yB1rvTXqTxrdR3RQ6HTrd40jbRDNmK033sH_vRJ8-OAcOH2NXCCkimJviffmyTgWgSQEkmRN2gVrkKAgUnbKRQAWJJlTnbBLjFgAQciIjR2z12tXB7vjaHuItL53t29B-8MV-N4Rk0TVHdRfi0IdqP4SujbzzfOka94tsy1e93bp66PrgIl-H4ZPPp0_xkp15u4tu8r9j9ja7XxUPSfk8fyymZVILI4Ykz6yQtdTHZ5XUSMppaqDJIctI5MKrJtNCKfA1YQ0OlfVGWvTS-KrKUcsxu_7rBufc5rsPX7Y_bAwIIgL5Ay2fT1E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories With GANs</title><source>IEEE Xplore All Conference Series</source><creator>Amirian, Javad ; Hayet, Jean-Bernard ; Pettre, Julien</creator><creatorcontrib>Amirian, Javad ; Hayet, Jean-Bernard ; Pettre, Julien</creatorcontrib><description>This paper proposes a novel approach for predicting the motion of pedestrians interacting with others. It uses a Generative Adversarial Network (GAN) to sample plausible predictions for any agent in the scene. As GANs are very susceptible to mode collapsing and dropping, we show that the recently proposed Info-GAN allows dramatic improvements in multi-modal pedestrian trajectory prediction to avoid these issues. We also left out L2-loss in training the generator, unlike some previous works, because it causes serious mode collapsing though faster convergence. We show through experiments on real and synthetic data that the proposed method leads to generate more diverse samples and to preserve the modes of the predictive distribution. In particular, to prove this claim, we have designed a toy example dataset of trajectories that can be used to assess the performance of different methods in preserving the predictive distribution modes.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 1728125065</identifier><identifier>EISBN: 9781728125060</identifier><identifier>DOI: 10.1109/CVPRW.2019.00359</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Encoding ; Gallium nitride ; Generative adversarial networks ; Generators ; Mathematical model ; Trajectory</subject><ispartof>2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2019, p.2964-2972</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-84a23c37751b37156e75d0d80445282f6d472660fc51c0e16af93a1f39fbb8173</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9025550$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,23911,23912,25121,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9025550$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amirian, Javad</creatorcontrib><creatorcontrib>Hayet, Jean-Bernard</creatorcontrib><creatorcontrib>Pettre, Julien</creatorcontrib><title>Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories With GANs</title><title>2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>This paper proposes a novel approach for predicting the motion of pedestrians interacting with others. It uses a Generative Adversarial Network (GAN) to sample plausible predictions for any agent in the scene. As GANs are very susceptible to mode collapsing and dropping, we show that the recently proposed Info-GAN allows dramatic improvements in multi-modal pedestrian trajectory prediction to avoid these issues. We also left out L2-loss in training the generator, unlike some previous works, because it causes serious mode collapsing though faster convergence. We show through experiments on real and synthetic data that the proposed method leads to generate more diverse samples and to preserve the modes of the predictive distribution. In particular, to prove this claim, we have designed a toy example dataset of trajectories that can be used to assess the performance of different methods in preserving the predictive distribution modes.</description><subject>Artificial neural networks</subject><subject>Encoding</subject><subject>Gallium nitride</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Mathematical model</subject><subject>Trajectory</subject><issn>2160-7516</issn><isbn>1728125065</isbn><isbn>9781728125060</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjlFLwzAURqMgOOfeBV_yB1rvTXqTxrdR3RQ6HTrd40jbRDNmK033sH_vRJ8-OAcOH2NXCCkimJviffmyTgWgSQEkmRN2gVrkKAgUnbKRQAWJJlTnbBLjFgAQciIjR2z12tXB7vjaHuItL53t29B-8MV-N4Rk0TVHdRfi0IdqP4SujbzzfOka94tsy1e93bp66PrgIl-H4ZPPp0_xkp15u4tu8r9j9ja7XxUPSfk8fyymZVILI4Ykz6yQtdTHZ5XUSMppaqDJIctI5MKrJtNCKfA1YQ0OlfVGWvTS-KrKUcsxu_7rBufc5rsPX7Y_bAwIIgL5Ay2fT1E</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Amirian, Javad</creator><creator>Hayet, Jean-Bernard</creator><creator>Pettre, Julien</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20190601</creationdate><title>Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories With GANs</title><author>Amirian, Javad ; Hayet, Jean-Bernard ; Pettre, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-84a23c37751b37156e75d0d80445282f6d472660fc51c0e16af93a1f39fbb8173</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Encoding</topic><topic>Gallium nitride</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Mathematical model</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Amirian, Javad</creatorcontrib><creatorcontrib>Hayet, Jean-Bernard</creatorcontrib><creatorcontrib>Pettre, Julien</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amirian, Javad</au><au>Hayet, Jean-Bernard</au><au>Pettre, Julien</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories With GANs</atitle><btitle>2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2019-06-01</date><risdate>2019</risdate><spage>2964</spage><epage>2972</epage><pages>2964-2972</pages><eissn>2160-7516</eissn><eisbn>1728125065</eisbn><eisbn>9781728125060</eisbn><coden>IEEPAD</coden><abstract>This paper proposes a novel approach for predicting the motion of pedestrians interacting with others. It uses a Generative Adversarial Network (GAN) to sample plausible predictions for any agent in the scene. As GANs are very susceptible to mode collapsing and dropping, we show that the recently proposed Info-GAN allows dramatic improvements in multi-modal pedestrian trajectory prediction to avoid these issues. We also left out L2-loss in training the generator, unlike some previous works, because it causes serious mode collapsing though faster convergence. We show through experiments on real and synthetic data that the proposed method leads to generate more diverse samples and to preserve the modes of the predictive distribution. In particular, to prove this claim, we have designed a toy example dataset of trajectories that can be used to assess the performance of different methods in preserving the predictive distribution modes.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW.2019.00359</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2160-7516 |
ispartof | 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2019, p.2964-2972 |
issn | 2160-7516 |
language | eng |
recordid | cdi_ieee_primary_9025550 |
source | IEEE Xplore All Conference Series |
subjects | Artificial neural networks Encoding Gallium nitride Generative adversarial networks Generators Mathematical model Trajectory |
title | Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories With GANs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Social%20Ways:%20Learning%20Multi-Modal%20Distributions%20of%20Pedestrian%20Trajectories%20With%20GANs&rft.btitle=2019%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Amirian,%20Javad&rft.date=2019-06-01&rft.spage=2964&rft.epage=2972&rft.pages=2964-2972&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW.2019.00359&rft.eisbn=1728125065&rft.eisbn_list=9781728125060&rft_dat=%3Cieee_CHZPO%3E9025550%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-84a23c37751b37156e75d0d80445282f6d472660fc51c0e16af93a1f39fbb8173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9025550&rfr_iscdi=true |