Loading…
Vector quantization based Gaussian modeling for speaker verification
Gaussian mixture models (GMMs) have become an established means of modeling feature distributions in speaker recognition systems. It is useful for experimentation and practical implementation purposes to develop and test these models in an efficient manner particularly when computational resources a...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 297 vol.3 |
container_issue | |
container_start_page | 294 |
container_title | |
container_volume | 3 |
creator | Pelecanos, J. Myers, S. Sridharan, S. Chandran, V. |
description | Gaussian mixture models (GMMs) have become an established means of modeling feature distributions in speaker recognition systems. It is useful for experimentation and practical implementation purposes to develop and test these models in an efficient manner particularly when computational resources are limited. A method of combining vector quantization (VQ) with single multi-dimensional Gaussians is proposed to rapidly generate a robust model approximation to the Gaussian mixture model. A fast method of testing these systems is also proposed and implemented. Results on the NIST 1996 Speaker Recognition Database suggest comparable and in some cases an improved verification performance to the traditional GMM based analysis scheme. In addition, previous research for the task of speaker identification indicated a similar system perfomance between the VQ Gaussian based technique and GMMs. |
doi_str_mv | 10.1109/ICPR.2000.903543 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_903543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>903543</ieee_id><sourcerecordid>903543</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-43445128941ebd3c91b222cae43019ea12f0ff66b98175780e4b43b3d3d984a93</originalsourceid><addsrcrecordid>eNotj1tLw0AUhBcvYKx9F5_2DySes5fs7qNUWwsFRYqvZTc5kdU2qdlU0F9vsMLAvMw3zDB2jVAggrtdzp5fCgEAhQOplTxhmbASc6OMPmVTZyyY0mkwo85YhqAxV6XGC3aZ0juAGCmbsftXqoau558H3w7xxw-xa3nwiWq-8IeUom_5rqtpG9s33ozBtCf_QT3_oj42sfoDrth547eJpv8-Yev5w3r2mK-eFsvZ3SqP1gy5kkppFNYppFDLymEQQlSelAR05FE00DRlGZxFo8f9pIKSQdaydlZ5Jyfs5lgbiWiz7-PO99-b4335C8B4TCg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Vector quantization based Gaussian modeling for speaker verification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pelecanos, J. ; Myers, S. ; Sridharan, S. ; Chandran, V.</creator><creatorcontrib>Pelecanos, J. ; Myers, S. ; Sridharan, S. ; Chandran, V.</creatorcontrib><description>Gaussian mixture models (GMMs) have become an established means of modeling feature distributions in speaker recognition systems. It is useful for experimentation and practical implementation purposes to develop and test these models in an efficient manner particularly when computational resources are limited. A method of combining vector quantization (VQ) with single multi-dimensional Gaussians is proposed to rapidly generate a robust model approximation to the Gaussian mixture model. A fast method of testing these systems is also proposed and implemented. Results on the NIST 1996 Speaker Recognition Database suggest comparable and in some cases an improved verification performance to the traditional GMM based analysis scheme. In addition, previous research for the task of speaker identification indicated a similar system perfomance between the VQ Gaussian based technique and GMMs.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9780769507507</identifier><identifier>ISBN: 0769507506</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2000.903543</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; NIST ; Probability density function ; Robustness ; Speaker recognition ; Speech ; System testing ; Systems engineering and theory ; Vector quantization</subject><ispartof>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.3, p.294-297 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/903543$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/903543$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pelecanos, J.</creatorcontrib><creatorcontrib>Myers, S.</creatorcontrib><creatorcontrib>Sridharan, S.</creatorcontrib><creatorcontrib>Chandran, V.</creatorcontrib><title>Vector quantization based Gaussian modeling for speaker verification</title><title>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</title><addtitle>ICPR</addtitle><description>Gaussian mixture models (GMMs) have become an established means of modeling feature distributions in speaker recognition systems. It is useful for experimentation and practical implementation purposes to develop and test these models in an efficient manner particularly when computational resources are limited. A method of combining vector quantization (VQ) with single multi-dimensional Gaussians is proposed to rapidly generate a robust model approximation to the Gaussian mixture model. A fast method of testing these systems is also proposed and implemented. Results on the NIST 1996 Speaker Recognition Database suggest comparable and in some cases an improved verification performance to the traditional GMM based analysis scheme. In addition, previous research for the task of speaker identification indicated a similar system perfomance between the VQ Gaussian based technique and GMMs.</description><subject>Australia</subject><subject>NIST</subject><subject>Probability density function</subject><subject>Robustness</subject><subject>Speaker recognition</subject><subject>Speech</subject><subject>System testing</subject><subject>Systems engineering and theory</subject><subject>Vector quantization</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9780769507507</isbn><isbn>0769507506</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1tLw0AUhBcvYKx9F5_2DySes5fs7qNUWwsFRYqvZTc5kdU2qdlU0F9vsMLAvMw3zDB2jVAggrtdzp5fCgEAhQOplTxhmbASc6OMPmVTZyyY0mkwo85YhqAxV6XGC3aZ0juAGCmbsftXqoau558H3w7xxw-xa3nwiWq-8IeUom_5rqtpG9s33ozBtCf_QT3_oj42sfoDrth547eJpv8-Yev5w3r2mK-eFsvZ3SqP1gy5kkppFNYppFDLymEQQlSelAR05FE00DRlGZxFo8f9pIKSQdaydlZ5Jyfs5lgbiWiz7-PO99-b4335C8B4TCg</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Pelecanos, J.</creator><creator>Myers, S.</creator><creator>Sridharan, S.</creator><creator>Chandran, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Vector quantization based Gaussian modeling for speaker verification</title><author>Pelecanos, J. ; Myers, S. ; Sridharan, S. ; Chandran, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-43445128941ebd3c91b222cae43019ea12f0ff66b98175780e4b43b3d3d984a93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Australia</topic><topic>NIST</topic><topic>Probability density function</topic><topic>Robustness</topic><topic>Speaker recognition</topic><topic>Speech</topic><topic>System testing</topic><topic>Systems engineering and theory</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Pelecanos, J.</creatorcontrib><creatorcontrib>Myers, S.</creatorcontrib><creatorcontrib>Sridharan, S.</creatorcontrib><creatorcontrib>Chandran, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pelecanos, J.</au><au>Myers, S.</au><au>Sridharan, S.</au><au>Chandran, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Vector quantization based Gaussian modeling for speaker verification</atitle><btitle>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</btitle><stitle>ICPR</stitle><date>2000</date><risdate>2000</risdate><volume>3</volume><spage>294</spage><epage>297 vol.3</epage><pages>294-297 vol.3</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9780769507507</isbn><isbn>0769507506</isbn><abstract>Gaussian mixture models (GMMs) have become an established means of modeling feature distributions in speaker recognition systems. It is useful for experimentation and practical implementation purposes to develop and test these models in an efficient manner particularly when computational resources are limited. A method of combining vector quantization (VQ) with single multi-dimensional Gaussians is proposed to rapidly generate a robust model approximation to the Gaussian mixture model. A fast method of testing these systems is also proposed and implemented. Results on the NIST 1996 Speaker Recognition Database suggest comparable and in some cases an improved verification performance to the traditional GMM based analysis scheme. In addition, previous research for the task of speaker identification indicated a similar system perfomance between the VQ Gaussian based technique and GMMs.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2000.903543</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.3, p.294-297 vol.3 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_903543 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Australia NIST Probability density function Robustness Speaker recognition Speech System testing Systems engineering and theory Vector quantization |
title | Vector quantization based Gaussian modeling for speaker verification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A03%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Vector%20quantization%20based%20Gaussian%20modeling%20for%20speaker%20verification&rft.btitle=Proceedings%2015th%20International%20Conference%20on%20Pattern%20Recognition.%20ICPR-2000&rft.au=Pelecanos,%20J.&rft.date=2000&rft.volume=3&rft.spage=294&rft.epage=297%20vol.3&rft.pages=294-297%20vol.3&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9780769507507&rft.isbn_list=0769507506&rft_id=info:doi/10.1109/ICPR.2000.903543&rft_dat=%3Cieee_6IE%3E903543%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i87t-43445128941ebd3c91b222cae43019ea12f0ff66b98175780e4b43b3d3d984a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=903543&rfr_iscdi=true |