Loading…

A two-step fuzzy-Bayesian classification for high dimensional data

The goal of this paper is twofold. First, we present a supervised fuzzy c-mean (SFCM) classifier for the classification of high dimensional data. Comparisons of the conventional FCM clustering technique and Bayesian classification technique are also presented. Next, we present a two-step classifier...

Full description

Saved in:
Bibliographic Details
Main Authors: Mostafa, M.G.-H., Perkins, T.C., Farag, A.A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 420 vol.3
container_issue
container_start_page 417
container_title
container_volume 3
creator Mostafa, M.G.-H.
Perkins, T.C.
Farag, A.A.
description The goal of this paper is twofold. First, we present a supervised fuzzy c-mean (SFCM) classifier for the classification of high dimensional data. Comparisons of the conventional FCM clustering technique and Bayesian classification technique are also presented. Next, we present a two-step classifier in which the proposed SFCM and Bayesian algorithms are used in a cooperative way such that classification results of the SFCM algorithm are used to compute the prior probabilities required for the Bayesian classifier. Classification results of the three algorithms are presented on simulated and real remote sensing multispectral data. The results obtained show improvements in the classification accuracy and reliability using the two-step algorithm.
doi_str_mv 10.1109/ICPR.2000.903573
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_903573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>903573</ieee_id><sourcerecordid>903573</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-b14c5ae76bdcdc653c404bc6823d24249831f69448f92bfd61d7b2512bc3e2c63</originalsourceid><addsrcrecordid>eNotj1lLw0AAhBcPMNa-i0_7B7bufTy2wWqhoEjfy552JU1KNiLprzdQYWBg4BtmAHgkeEEINs-b-uNzQTHGC4OZUOwKVFQzghRX4hrMjdJYSSOwmnQDKoIFQVwKcgfuS_nGmE6UrsBqCYffDpUhnmD6OZ9HtLJjLNm20De2lJyyt0PuWpi6Hh7y1wGGfIxtmSLbwGAH-wBuk21KnP_7DOzWL7v6DW3fXzf1couyNgNyhHtho5Iu-OClYJ5j7rzUlAXKKTfT-CQN5zoZ6lKQJChHBaHOs0i9ZDPwdKnNMcb9qc9H24_7y3n2B-yaS5o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A two-step fuzzy-Bayesian classification for high dimensional data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mostafa, M.G.-H. ; Perkins, T.C. ; Farag, A.A.</creator><creatorcontrib>Mostafa, M.G.-H. ; Perkins, T.C. ; Farag, A.A.</creatorcontrib><description>The goal of this paper is twofold. First, we present a supervised fuzzy c-mean (SFCM) classifier for the classification of high dimensional data. Comparisons of the conventional FCM clustering technique and Bayesian classification technique are also presented. Next, we present a two-step classifier in which the proposed SFCM and Bayesian algorithms are used in a cooperative way such that classification results of the SFCM algorithm are used to compute the prior probabilities required for the Bayesian classifier. Classification results of the three algorithms are presented on simulated and real remote sensing multispectral data. The results obtained show improvements in the classification accuracy and reliability using the two-step algorithm.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9780769507507</identifier><identifier>ISBN: 0769507506</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2000.903573</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Classification algorithms ; Clustering algorithms ; Fuzzy logic ; High-resolution imaging ; Hyperspectral imaging ; Hyperspectral sensors ; Image segmentation ; Remote sensing ; Uncertainty</subject><ispartof>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.3, p.417-420 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/903573$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/903573$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mostafa, M.G.-H.</creatorcontrib><creatorcontrib>Perkins, T.C.</creatorcontrib><creatorcontrib>Farag, A.A.</creatorcontrib><title>A two-step fuzzy-Bayesian classification for high dimensional data</title><title>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</title><addtitle>ICPR</addtitle><description>The goal of this paper is twofold. First, we present a supervised fuzzy c-mean (SFCM) classifier for the classification of high dimensional data. Comparisons of the conventional FCM clustering technique and Bayesian classification technique are also presented. Next, we present a two-step classifier in which the proposed SFCM and Bayesian algorithms are used in a cooperative way such that classification results of the SFCM algorithm are used to compute the prior probabilities required for the Bayesian classifier. Classification results of the three algorithms are presented on simulated and real remote sensing multispectral data. The results obtained show improvements in the classification accuracy and reliability using the two-step algorithm.</description><subject>Bayesian methods</subject><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>Fuzzy logic</subject><subject>High-resolution imaging</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>Image segmentation</subject><subject>Remote sensing</subject><subject>Uncertainty</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9780769507507</isbn><isbn>0769507506</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1lLw0AAhBcPMNa-i0_7B7bufTy2wWqhoEjfy552JU1KNiLprzdQYWBg4BtmAHgkeEEINs-b-uNzQTHGC4OZUOwKVFQzghRX4hrMjdJYSSOwmnQDKoIFQVwKcgfuS_nGmE6UrsBqCYffDpUhnmD6OZ9HtLJjLNm20De2lJyyt0PuWpi6Hh7y1wGGfIxtmSLbwGAH-wBuk21KnP_7DOzWL7v6DW3fXzf1couyNgNyhHtho5Iu-OClYJ5j7rzUlAXKKTfT-CQN5zoZ6lKQJChHBaHOs0i9ZDPwdKnNMcb9qc9H24_7y3n2B-yaS5o</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Mostafa, M.G.-H.</creator><creator>Perkins, T.C.</creator><creator>Farag, A.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>A two-step fuzzy-Bayesian classification for high dimensional data</title><author>Mostafa, M.G.-H. ; Perkins, T.C. ; Farag, A.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-b14c5ae76bdcdc653c404bc6823d24249831f69448f92bfd61d7b2512bc3e2c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bayesian methods</topic><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>Fuzzy logic</topic><topic>High-resolution imaging</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>Image segmentation</topic><topic>Remote sensing</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Mostafa, M.G.-H.</creatorcontrib><creatorcontrib>Perkins, T.C.</creatorcontrib><creatorcontrib>Farag, A.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mostafa, M.G.-H.</au><au>Perkins, T.C.</au><au>Farag, A.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A two-step fuzzy-Bayesian classification for high dimensional data</atitle><btitle>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</btitle><stitle>ICPR</stitle><date>2000</date><risdate>2000</risdate><volume>3</volume><spage>417</spage><epage>420 vol.3</epage><pages>417-420 vol.3</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9780769507507</isbn><isbn>0769507506</isbn><abstract>The goal of this paper is twofold. First, we present a supervised fuzzy c-mean (SFCM) classifier for the classification of high dimensional data. Comparisons of the conventional FCM clustering technique and Bayesian classification technique are also presented. Next, we present a two-step classifier in which the proposed SFCM and Bayesian algorithms are used in a cooperative way such that classification results of the SFCM algorithm are used to compute the prior probabilities required for the Bayesian classifier. Classification results of the three algorithms are presented on simulated and real remote sensing multispectral data. The results obtained show improvements in the classification accuracy and reliability using the two-step algorithm.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2000.903573</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.3, p.417-420 vol.3
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_903573
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Classification algorithms
Clustering algorithms
Fuzzy logic
High-resolution imaging
Hyperspectral imaging
Hyperspectral sensors
Image segmentation
Remote sensing
Uncertainty
title A two-step fuzzy-Bayesian classification for high dimensional data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20two-step%20fuzzy-Bayesian%20classification%20for%20high%20dimensional%20data&rft.btitle=Proceedings%2015th%20International%20Conference%20on%20Pattern%20Recognition.%20ICPR-2000&rft.au=Mostafa,%20M.G.-H.&rft.date=2000&rft.volume=3&rft.spage=417&rft.epage=420%20vol.3&rft.pages=417-420%20vol.3&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9780769507507&rft.isbn_list=0769507506&rft_id=info:doi/10.1109/ICPR.2000.903573&rft_dat=%3Cieee_6IE%3E903573%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i89t-b14c5ae76bdcdc653c404bc6823d24249831f69448f92bfd61d7b2512bc3e2c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=903573&rfr_iscdi=true