Loading…

Topological Signal Processing Over Simplicial Complexes

The goal of this paper is to establish the fundamental tools to analyze signals defined over a topological space, i.e. a set of points along with a set of neighborhood relations. This setup does not require the definition of a metric and then it is especially useful to deal with signals defined over...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2020, Vol.68, p.2992-3007
Main Authors: Barbarossa, Sergio, Sardellitti, Stefania
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-b091856b679cc5c945f2fd79c21a292d43f201f53f0bb1b975b56720862455083
cites cdi_FETCH-LOGICAL-c380t-b091856b679cc5c945f2fd79c21a292d43f201f53f0bb1b975b56720862455083
container_end_page 3007
container_issue
container_start_page 2992
container_title IEEE transactions on signal processing
container_volume 68
creator Barbarossa, Sergio
Sardellitti, Stefania
description The goal of this paper is to establish the fundamental tools to analyze signals defined over a topological space, i.e. a set of points along with a set of neighborhood relations. This setup does not require the definition of a metric and then it is especially useful to deal with signals defined over non-metric spaces. We focus on signals defined over simplicial complexes. Graph Signal Processing (GSP) represents a special case of Topological Signal Processing (TSP), referring to the situation where the signals are associated only with the vertices of a graph. Even though the theory can be applied to signals of any order, we focus on signals defined over the edges of a graph and show how building a simplicial complex of order two, i.e. including triangles, yields benefits in the analysis of edge signals. After reviewing the basic principles of algebraic topology, we derive a sampling theory for signals of any order and emphasize the interplay between signals of different order. Then we propose a method to infer the topology of a simplicial complex from data. We conclude with applications to traffic analysis over wireless networks and to the processing of discrete vector fields to illustrate the benefits of the proposed methodologies.
doi_str_mv 10.1109/TSP.2020.2981920
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9044758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9044758</ieee_id><sourcerecordid>2418419703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-b091856b679cc5c945f2fd79c21a292d43f201f53f0bb1b975b56720862455083</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvB89aZfGySoxS_oNBCK3gLu2lSUrbNmrSi_70pFU_zZua9YfgRcoswRgT9sFzMxxQojKlWqCmckQFqjhVwWZ8XDYJVQsmPS3KV8wYAOdf1gMhl7GMX18E23WgR1rtS5ilal3PYrUezL5fKeNt3wYaymsQi3bfL1-TCN112N391SN6fn5aT12o6e3mbPE4ryxTsqxY0KlG3tdTWCqu58NSvSkOxoZquOPMU0AvmoW2x1VK0opYUVE25EKDYkNyf7vYpfh5c3ptNPKTyZTaUo-KoJbDigpPLpphzct70KWyb9GMQzBGPKXjMEY_5w1Mid6dIcM792zVwLoViv3kVXvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418419703</pqid></control><display><type>article</type><title>Topological Signal Processing Over Simplicial Complexes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Barbarossa, Sergio ; Sardellitti, Stefania</creator><creatorcontrib>Barbarossa, Sergio ; Sardellitti, Stefania</creatorcontrib><description>The goal of this paper is to establish the fundamental tools to analyze signals defined over a topological space, i.e. a set of points along with a set of neighborhood relations. This setup does not require the definition of a metric and then it is especially useful to deal with signals defined over non-metric spaces. We focus on signals defined over simplicial complexes. Graph Signal Processing (GSP) represents a special case of Topological Signal Processing (TSP), referring to the situation where the signals are associated only with the vertices of a graph. Even though the theory can be applied to signals of any order, we focus on signals defined over the edges of a graph and show how building a simplicial complex of order two, i.e. including triangles, yields benefits in the analysis of edge signals. After reviewing the basic principles of algebraic topology, we derive a sampling theory for signals of any order and emphasize the interplay between signals of different order. Then we propose a method to infer the topology of a simplicial complex from data. We conclude with applications to traffic analysis over wireless networks and to the processing of discrete vector fields to illustrate the benefits of the proposed methodologies.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2020.2981920</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebraic topology ; Apexes ; Data mining ; Extraterrestrial measurements ; Face ; Fields (mathematics) ; graph signal processing ; Graph theory ; Metric space ; Network topology ; Signal processing ; Topology ; topology inference ; Wireless networks</subject><ispartof>IEEE transactions on signal processing, 2020, Vol.68, p.2992-3007</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-b091856b679cc5c945f2fd79c21a292d43f201f53f0bb1b975b56720862455083</citedby><cites>FETCH-LOGICAL-c380t-b091856b679cc5c945f2fd79c21a292d43f201f53f0bb1b975b56720862455083</cites><orcidid>0000-0002-4749-2933 ; 0000-0001-9846-8741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9044758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Barbarossa, Sergio</creatorcontrib><creatorcontrib>Sardellitti, Stefania</creatorcontrib><title>Topological Signal Processing Over Simplicial Complexes</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The goal of this paper is to establish the fundamental tools to analyze signals defined over a topological space, i.e. a set of points along with a set of neighborhood relations. This setup does not require the definition of a metric and then it is especially useful to deal with signals defined over non-metric spaces. We focus on signals defined over simplicial complexes. Graph Signal Processing (GSP) represents a special case of Topological Signal Processing (TSP), referring to the situation where the signals are associated only with the vertices of a graph. Even though the theory can be applied to signals of any order, we focus on signals defined over the edges of a graph and show how building a simplicial complex of order two, i.e. including triangles, yields benefits in the analysis of edge signals. After reviewing the basic principles of algebraic topology, we derive a sampling theory for signals of any order and emphasize the interplay between signals of different order. Then we propose a method to infer the topology of a simplicial complex from data. We conclude with applications to traffic analysis over wireless networks and to the processing of discrete vector fields to illustrate the benefits of the proposed methodologies.</description><subject>Algebraic topology</subject><subject>Apexes</subject><subject>Data mining</subject><subject>Extraterrestrial measurements</subject><subject>Face</subject><subject>Fields (mathematics)</subject><subject>graph signal processing</subject><subject>Graph theory</subject><subject>Metric space</subject><subject>Network topology</subject><subject>Signal processing</subject><subject>Topology</subject><subject>topology inference</subject><subject>Wireless networks</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wUvB89aZfGySoxS_oNBCK3gLu2lSUrbNmrSi_70pFU_zZua9YfgRcoswRgT9sFzMxxQojKlWqCmckQFqjhVwWZ8XDYJVQsmPS3KV8wYAOdf1gMhl7GMX18E23WgR1rtS5ilal3PYrUezL5fKeNt3wYaymsQi3bfL1-TCN112N391SN6fn5aT12o6e3mbPE4ryxTsqxY0KlG3tdTWCqu58NSvSkOxoZquOPMU0AvmoW2x1VK0opYUVE25EKDYkNyf7vYpfh5c3ptNPKTyZTaUo-KoJbDigpPLpphzct70KWyb9GMQzBGPKXjMEY_5w1Mid6dIcM792zVwLoViv3kVXvg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Barbarossa, Sergio</creator><creator>Sardellitti, Stefania</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4749-2933</orcidid><orcidid>https://orcid.org/0000-0001-9846-8741</orcidid></search><sort><creationdate>2020</creationdate><title>Topological Signal Processing Over Simplicial Complexes</title><author>Barbarossa, Sergio ; Sardellitti, Stefania</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-b091856b679cc5c945f2fd79c21a292d43f201f53f0bb1b975b56720862455083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebraic topology</topic><topic>Apexes</topic><topic>Data mining</topic><topic>Extraterrestrial measurements</topic><topic>Face</topic><topic>Fields (mathematics)</topic><topic>graph signal processing</topic><topic>Graph theory</topic><topic>Metric space</topic><topic>Network topology</topic><topic>Signal processing</topic><topic>Topology</topic><topic>topology inference</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbarossa, Sergio</creatorcontrib><creatorcontrib>Sardellitti, Stefania</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbarossa, Sergio</au><au>Sardellitti, Stefania</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Signal Processing Over Simplicial Complexes</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2020</date><risdate>2020</risdate><volume>68</volume><spage>2992</spage><epage>3007</epage><pages>2992-3007</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The goal of this paper is to establish the fundamental tools to analyze signals defined over a topological space, i.e. a set of points along with a set of neighborhood relations. This setup does not require the definition of a metric and then it is especially useful to deal with signals defined over non-metric spaces. We focus on signals defined over simplicial complexes. Graph Signal Processing (GSP) represents a special case of Topological Signal Processing (TSP), referring to the situation where the signals are associated only with the vertices of a graph. Even though the theory can be applied to signals of any order, we focus on signals defined over the edges of a graph and show how building a simplicial complex of order two, i.e. including triangles, yields benefits in the analysis of edge signals. After reviewing the basic principles of algebraic topology, we derive a sampling theory for signals of any order and emphasize the interplay between signals of different order. Then we propose a method to infer the topology of a simplicial complex from data. We conclude with applications to traffic analysis over wireless networks and to the processing of discrete vector fields to illustrate the benefits of the proposed methodologies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2020.2981920</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4749-2933</orcidid><orcidid>https://orcid.org/0000-0001-9846-8741</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2020, Vol.68, p.2992-3007
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_9044758
source IEEE Electronic Library (IEL) Journals
subjects Algebraic topology
Apexes
Data mining
Extraterrestrial measurements
Face
Fields (mathematics)
graph signal processing
Graph theory
Metric space
Network topology
Signal processing
Topology
topology inference
Wireless networks
title Topological Signal Processing Over Simplicial Complexes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Signal%20Processing%20Over%20Simplicial%20Complexes&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Barbarossa,%20Sergio&rft.date=2020&rft.volume=68&rft.spage=2992&rft.epage=3007&rft.pages=2992-3007&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2020.2981920&rft_dat=%3Cproquest_ieee_%3E2418419703%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-b091856b679cc5c945f2fd79c21a292d43f201f53f0bb1b975b56720862455083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2418419703&rft_id=info:pmid/&rft_ieee_id=9044758&rfr_iscdi=true