Loading…
Topological Signal Processing Over Simplicial Complexes
The goal of this paper is to establish the fundamental tools to analyze signals defined over a topological space, i.e. a set of points along with a set of neighborhood relations. This setup does not require the definition of a metric and then it is especially useful to deal with signals defined over...
Saved in:
Published in: | IEEE transactions on signal processing 2020, Vol.68, p.2992-3007 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-b091856b679cc5c945f2fd79c21a292d43f201f53f0bb1b975b56720862455083 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-b091856b679cc5c945f2fd79c21a292d43f201f53f0bb1b975b56720862455083 |
container_end_page | 3007 |
container_issue | |
container_start_page | 2992 |
container_title | IEEE transactions on signal processing |
container_volume | 68 |
creator | Barbarossa, Sergio Sardellitti, Stefania |
description | The goal of this paper is to establish the fundamental tools to analyze signals defined over a topological space, i.e. a set of points along with a set of neighborhood relations. This setup does not require the definition of a metric and then it is especially useful to deal with signals defined over non-metric spaces. We focus on signals defined over simplicial complexes. Graph Signal Processing (GSP) represents a special case of Topological Signal Processing (TSP), referring to the situation where the signals are associated only with the vertices of a graph. Even though the theory can be applied to signals of any order, we focus on signals defined over the edges of a graph and show how building a simplicial complex of order two, i.e. including triangles, yields benefits in the analysis of edge signals. After reviewing the basic principles of algebraic topology, we derive a sampling theory for signals of any order and emphasize the interplay between signals of different order. Then we propose a method to infer the topology of a simplicial complex from data. We conclude with applications to traffic analysis over wireless networks and to the processing of discrete vector fields to illustrate the benefits of the proposed methodologies. |
doi_str_mv | 10.1109/TSP.2020.2981920 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9044758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9044758</ieee_id><sourcerecordid>2418419703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-b091856b679cc5c945f2fd79c21a292d43f201f53f0bb1b975b56720862455083</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvB89aZfGySoxS_oNBCK3gLu2lSUrbNmrSi_70pFU_zZua9YfgRcoswRgT9sFzMxxQojKlWqCmckQFqjhVwWZ8XDYJVQsmPS3KV8wYAOdf1gMhl7GMX18E23WgR1rtS5ilal3PYrUezL5fKeNt3wYaymsQi3bfL1-TCN112N391SN6fn5aT12o6e3mbPE4ryxTsqxY0KlG3tdTWCqu58NSvSkOxoZquOPMU0AvmoW2x1VK0opYUVE25EKDYkNyf7vYpfh5c3ptNPKTyZTaUo-KoJbDigpPLpphzct70KWyb9GMQzBGPKXjMEY_5w1Mid6dIcM792zVwLoViv3kVXvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418419703</pqid></control><display><type>article</type><title>Topological Signal Processing Over Simplicial Complexes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Barbarossa, Sergio ; Sardellitti, Stefania</creator><creatorcontrib>Barbarossa, Sergio ; Sardellitti, Stefania</creatorcontrib><description>The goal of this paper is to establish the fundamental tools to analyze signals defined over a topological space, i.e. a set of points along with a set of neighborhood relations. This setup does not require the definition of a metric and then it is especially useful to deal with signals defined over non-metric spaces. We focus on signals defined over simplicial complexes. Graph Signal Processing (GSP) represents a special case of Topological Signal Processing (TSP), referring to the situation where the signals are associated only with the vertices of a graph. Even though the theory can be applied to signals of any order, we focus on signals defined over the edges of a graph and show how building a simplicial complex of order two, i.e. including triangles, yields benefits in the analysis of edge signals. After reviewing the basic principles of algebraic topology, we derive a sampling theory for signals of any order and emphasize the interplay between signals of different order. Then we propose a method to infer the topology of a simplicial complex from data. We conclude with applications to traffic analysis over wireless networks and to the processing of discrete vector fields to illustrate the benefits of the proposed methodologies.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2020.2981920</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebraic topology ; Apexes ; Data mining ; Extraterrestrial measurements ; Face ; Fields (mathematics) ; graph signal processing ; Graph theory ; Metric space ; Network topology ; Signal processing ; Topology ; topology inference ; Wireless networks</subject><ispartof>IEEE transactions on signal processing, 2020, Vol.68, p.2992-3007</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-b091856b679cc5c945f2fd79c21a292d43f201f53f0bb1b975b56720862455083</citedby><cites>FETCH-LOGICAL-c380t-b091856b679cc5c945f2fd79c21a292d43f201f53f0bb1b975b56720862455083</cites><orcidid>0000-0002-4749-2933 ; 0000-0001-9846-8741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9044758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Barbarossa, Sergio</creatorcontrib><creatorcontrib>Sardellitti, Stefania</creatorcontrib><title>Topological Signal Processing Over Simplicial Complexes</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The goal of this paper is to establish the fundamental tools to analyze signals defined over a topological space, i.e. a set of points along with a set of neighborhood relations. This setup does not require the definition of a metric and then it is especially useful to deal with signals defined over non-metric spaces. We focus on signals defined over simplicial complexes. Graph Signal Processing (GSP) represents a special case of Topological Signal Processing (TSP), referring to the situation where the signals are associated only with the vertices of a graph. Even though the theory can be applied to signals of any order, we focus on signals defined over the edges of a graph and show how building a simplicial complex of order two, i.e. including triangles, yields benefits in the analysis of edge signals. After reviewing the basic principles of algebraic topology, we derive a sampling theory for signals of any order and emphasize the interplay between signals of different order. Then we propose a method to infer the topology of a simplicial complex from data. We conclude with applications to traffic analysis over wireless networks and to the processing of discrete vector fields to illustrate the benefits of the proposed methodologies.</description><subject>Algebraic topology</subject><subject>Apexes</subject><subject>Data mining</subject><subject>Extraterrestrial measurements</subject><subject>Face</subject><subject>Fields (mathematics)</subject><subject>graph signal processing</subject><subject>Graph theory</subject><subject>Metric space</subject><subject>Network topology</subject><subject>Signal processing</subject><subject>Topology</subject><subject>topology inference</subject><subject>Wireless networks</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wUvB89aZfGySoxS_oNBCK3gLu2lSUrbNmrSi_70pFU_zZua9YfgRcoswRgT9sFzMxxQojKlWqCmckQFqjhVwWZ8XDYJVQsmPS3KV8wYAOdf1gMhl7GMX18E23WgR1rtS5ilal3PYrUezL5fKeNt3wYaymsQi3bfL1-TCN112N391SN6fn5aT12o6e3mbPE4ryxTsqxY0KlG3tdTWCqu58NSvSkOxoZquOPMU0AvmoW2x1VK0opYUVE25EKDYkNyf7vYpfh5c3ptNPKTyZTaUo-KoJbDigpPLpphzct70KWyb9GMQzBGPKXjMEY_5w1Mid6dIcM792zVwLoViv3kVXvg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Barbarossa, Sergio</creator><creator>Sardellitti, Stefania</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4749-2933</orcidid><orcidid>https://orcid.org/0000-0001-9846-8741</orcidid></search><sort><creationdate>2020</creationdate><title>Topological Signal Processing Over Simplicial Complexes</title><author>Barbarossa, Sergio ; Sardellitti, Stefania</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-b091856b679cc5c945f2fd79c21a292d43f201f53f0bb1b975b56720862455083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebraic topology</topic><topic>Apexes</topic><topic>Data mining</topic><topic>Extraterrestrial measurements</topic><topic>Face</topic><topic>Fields (mathematics)</topic><topic>graph signal processing</topic><topic>Graph theory</topic><topic>Metric space</topic><topic>Network topology</topic><topic>Signal processing</topic><topic>Topology</topic><topic>topology inference</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbarossa, Sergio</creatorcontrib><creatorcontrib>Sardellitti, Stefania</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbarossa, Sergio</au><au>Sardellitti, Stefania</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Signal Processing Over Simplicial Complexes</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2020</date><risdate>2020</risdate><volume>68</volume><spage>2992</spage><epage>3007</epage><pages>2992-3007</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The goal of this paper is to establish the fundamental tools to analyze signals defined over a topological space, i.e. a set of points along with a set of neighborhood relations. This setup does not require the definition of a metric and then it is especially useful to deal with signals defined over non-metric spaces. We focus on signals defined over simplicial complexes. Graph Signal Processing (GSP) represents a special case of Topological Signal Processing (TSP), referring to the situation where the signals are associated only with the vertices of a graph. Even though the theory can be applied to signals of any order, we focus on signals defined over the edges of a graph and show how building a simplicial complex of order two, i.e. including triangles, yields benefits in the analysis of edge signals. After reviewing the basic principles of algebraic topology, we derive a sampling theory for signals of any order and emphasize the interplay between signals of different order. Then we propose a method to infer the topology of a simplicial complex from data. We conclude with applications to traffic analysis over wireless networks and to the processing of discrete vector fields to illustrate the benefits of the proposed methodologies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2020.2981920</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4749-2933</orcidid><orcidid>https://orcid.org/0000-0001-9846-8741</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2020, Vol.68, p.2992-3007 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_9044758 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algebraic topology Apexes Data mining Extraterrestrial measurements Face Fields (mathematics) graph signal processing Graph theory Metric space Network topology Signal processing Topology topology inference Wireless networks |
title | Topological Signal Processing Over Simplicial Complexes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Signal%20Processing%20Over%20Simplicial%20Complexes&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Barbarossa,%20Sergio&rft.date=2020&rft.volume=68&rft.spage=2992&rft.epage=3007&rft.pages=2992-3007&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2020.2981920&rft_dat=%3Cproquest_ieee_%3E2418419703%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-b091856b679cc5c945f2fd79c21a292d43f201f53f0bb1b975b56720862455083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2418419703&rft_id=info:pmid/&rft_ieee_id=9044758&rfr_iscdi=true |