Loading…

A Nonisolated Symmetric Bipolar Output Four-Port Converter Interfacing PV-Battery System

A bipolar dc microgrid is desirable as it enhances the system reliability and efficiency. However, the conventional bipolar dc microgrid requires multiple dc-dc converters to feed the power to the load, which leads to large volume and weight and high cost. In this article, a novel four-port converte...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2020-11, Vol.35 (11), p.11731-11744
Main Authors: Tian, Qingxin, Zhou, Guohua, Leng, Minrui, Xu, Guodong, Fan, Xianyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-287e92612b977db7d0a941abd90f9dbd3e056fcbeba6d2b166a684f8e47e7333
cites cdi_FETCH-LOGICAL-c293t-287e92612b977db7d0a941abd90f9dbd3e056fcbeba6d2b166a684f8e47e7333
container_end_page 11744
container_issue 11
container_start_page 11731
container_title IEEE transactions on power electronics
container_volume 35
creator Tian, Qingxin
Zhou, Guohua
Leng, Minrui
Xu, Guodong
Fan, Xianyan
description A bipolar dc microgrid is desirable as it enhances the system reliability and efficiency. However, the conventional bipolar dc microgrid requires multiple dc-dc converters to feed the power to the load, which leads to large volume and weight and high cost. In this article, a novel four-port converter is proposed to integrate photovoltaic (PV) module and battery to the bipolar dc microgrid system, realizing the single-stage energy conversion. The main advantages of this converter are that three switches are used to realize PV generation, battery charging and discharging, as well as symmetrical bipolar output voltage, and all input ports and output ports share the common reference ground. Depending on relationships between the energies of the source and the load, three different operation modes are defined. Then, the detailed parameter design is provided by analyzing different operation modes of the converter. Energy management and control strategies of the bipolar dc microgrid using this converter are explained in detail. Finally, experimental verifications are given to illustrate the feasibility and effectiveness of the proposed converter.
doi_str_mv 10.1109/TPEL.2020.2983113
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9050559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9050559</ieee_id><sourcerecordid>2429223942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-287e92612b977db7d0a941abd90f9dbd3e056fcbeba6d2b166a684f8e47e7333</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhYMoWKs_QHwJ-Jw6SfaWx7a0Wii2YBHfQnZ3VrZ0LyZZof_elBZfZpjhnJnDR8gjhwnnoF5228V6IkDARKhMci6vyIiriDPgkF6TEWRZzDKl5C25c24PwKMY-Ih8Tel719auOxiPJf04Ng16Wxd0VvdhZ-lm8P3g6bIbLNt21tN51_6i9Wjpqg21MkXdftPtJ5sZH-ZjuOE8NvfkpjIHhw-XPia75WI3f2PrzetqPl2zQijpmchSVCLhIldpWuZpCSakNnmpoFJlXkqEOKmKHHOTlCLnSWKSLKoyjFJMpZRj8nw-29vuZ0Dn9T4kbcNHLSKhhJAqEkHFz6rCds5ZrHRv68bYo-agT_z0iZ8-8dMXfsHzdPbUiPivVxBDHCv5B91QbIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429223942</pqid></control><display><type>article</type><title>A Nonisolated Symmetric Bipolar Output Four-Port Converter Interfacing PV-Battery System</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tian, Qingxin ; Zhou, Guohua ; Leng, Minrui ; Xu, Guodong ; Fan, Xianyan</creator><creatorcontrib>Tian, Qingxin ; Zhou, Guohua ; Leng, Minrui ; Xu, Guodong ; Fan, Xianyan</creatorcontrib><description>A bipolar dc microgrid is desirable as it enhances the system reliability and efficiency. However, the conventional bipolar dc microgrid requires multiple dc-dc converters to feed the power to the load, which leads to large volume and weight and high cost. In this article, a novel four-port converter is proposed to integrate photovoltaic (PV) module and battery to the bipolar dc microgrid system, realizing the single-stage energy conversion. The main advantages of this converter are that three switches are used to realize PV generation, battery charging and discharging, as well as symmetrical bipolar output voltage, and all input ports and output ports share the common reference ground. Depending on relationships between the energies of the source and the load, three different operation modes are defined. Then, the detailed parameter design is provided by analyzing different operation modes of the converter. Energy management and control strategies of the bipolar dc microgrid using this converter are explained in detail. Finally, experimental verifications are given to illustrate the feasibility and effectiveness of the proposed converter.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2020.2983113</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; Battery chargers ; Bipolar dc microgrid ; Capacitors ; Charging ; Converters ; DC-DC power converters ; Design parameters ; Distributed generation ; Energy conversion ; Energy management ; Microgrids ; multiport dc–dc converter ; photovoltaic (PV) battery energy system ; Photovoltaic cells ; Ports ; Renewable energy sources ; single-stage energy conversion ; Switches ; System reliability ; Topology</subject><ispartof>IEEE transactions on power electronics, 2020-11, Vol.35 (11), p.11731-11744</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-287e92612b977db7d0a941abd90f9dbd3e056fcbeba6d2b166a684f8e47e7333</citedby><cites>FETCH-LOGICAL-c293t-287e92612b977db7d0a941abd90f9dbd3e056fcbeba6d2b166a684f8e47e7333</cites><orcidid>0000-0003-0889-2632 ; 0000-0002-0616-3340 ; 0000-0002-8335-858X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9050559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Tian, Qingxin</creatorcontrib><creatorcontrib>Zhou, Guohua</creatorcontrib><creatorcontrib>Leng, Minrui</creatorcontrib><creatorcontrib>Xu, Guodong</creatorcontrib><creatorcontrib>Fan, Xianyan</creatorcontrib><title>A Nonisolated Symmetric Bipolar Output Four-Port Converter Interfacing PV-Battery System</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>A bipolar dc microgrid is desirable as it enhances the system reliability and efficiency. However, the conventional bipolar dc microgrid requires multiple dc-dc converters to feed the power to the load, which leads to large volume and weight and high cost. In this article, a novel four-port converter is proposed to integrate photovoltaic (PV) module and battery to the bipolar dc microgrid system, realizing the single-stage energy conversion. The main advantages of this converter are that three switches are used to realize PV generation, battery charging and discharging, as well as symmetrical bipolar output voltage, and all input ports and output ports share the common reference ground. Depending on relationships between the energies of the source and the load, three different operation modes are defined. Then, the detailed parameter design is provided by analyzing different operation modes of the converter. Energy management and control strategies of the bipolar dc microgrid using this converter are explained in detail. Finally, experimental verifications are given to illustrate the feasibility and effectiveness of the proposed converter.</description><subject>Batteries</subject><subject>Battery chargers</subject><subject>Bipolar dc microgrid</subject><subject>Capacitors</subject><subject>Charging</subject><subject>Converters</subject><subject>DC-DC power converters</subject><subject>Design parameters</subject><subject>Distributed generation</subject><subject>Energy conversion</subject><subject>Energy management</subject><subject>Microgrids</subject><subject>multiport dc–dc converter</subject><subject>photovoltaic (PV) battery energy system</subject><subject>Photovoltaic cells</subject><subject>Ports</subject><subject>Renewable energy sources</subject><subject>single-stage energy conversion</subject><subject>Switches</subject><subject>System reliability</subject><subject>Topology</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLAzEQhYMoWKs_QHwJ-Jw6SfaWx7a0Wii2YBHfQnZ3VrZ0LyZZof_elBZfZpjhnJnDR8gjhwnnoF5228V6IkDARKhMci6vyIiriDPgkF6TEWRZzDKl5C25c24PwKMY-Ih8Tel719auOxiPJf04Ng16Wxd0VvdhZ-lm8P3g6bIbLNt21tN51_6i9Wjpqg21MkXdftPtJ5sZH-ZjuOE8NvfkpjIHhw-XPia75WI3f2PrzetqPl2zQijpmchSVCLhIldpWuZpCSakNnmpoFJlXkqEOKmKHHOTlCLnSWKSLKoyjFJMpZRj8nw-29vuZ0Dn9T4kbcNHLSKhhJAqEkHFz6rCds5ZrHRv68bYo-agT_z0iZ8-8dMXfsHzdPbUiPivVxBDHCv5B91QbIc</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Tian, Qingxin</creator><creator>Zhou, Guohua</creator><creator>Leng, Minrui</creator><creator>Xu, Guodong</creator><creator>Fan, Xianyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0889-2632</orcidid><orcidid>https://orcid.org/0000-0002-0616-3340</orcidid><orcidid>https://orcid.org/0000-0002-8335-858X</orcidid></search><sort><creationdate>20201101</creationdate><title>A Nonisolated Symmetric Bipolar Output Four-Port Converter Interfacing PV-Battery System</title><author>Tian, Qingxin ; Zhou, Guohua ; Leng, Minrui ; Xu, Guodong ; Fan, Xianyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-287e92612b977db7d0a941abd90f9dbd3e056fcbeba6d2b166a684f8e47e7333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batteries</topic><topic>Battery chargers</topic><topic>Bipolar dc microgrid</topic><topic>Capacitors</topic><topic>Charging</topic><topic>Converters</topic><topic>DC-DC power converters</topic><topic>Design parameters</topic><topic>Distributed generation</topic><topic>Energy conversion</topic><topic>Energy management</topic><topic>Microgrids</topic><topic>multiport dc–dc converter</topic><topic>photovoltaic (PV) battery energy system</topic><topic>Photovoltaic cells</topic><topic>Ports</topic><topic>Renewable energy sources</topic><topic>single-stage energy conversion</topic><topic>Switches</topic><topic>System reliability</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Qingxin</creatorcontrib><creatorcontrib>Zhou, Guohua</creatorcontrib><creatorcontrib>Leng, Minrui</creatorcontrib><creatorcontrib>Xu, Guodong</creatorcontrib><creatorcontrib>Fan, Xianyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Qingxin</au><au>Zhou, Guohua</au><au>Leng, Minrui</au><au>Xu, Guodong</au><au>Fan, Xianyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nonisolated Symmetric Bipolar Output Four-Port Converter Interfacing PV-Battery System</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>35</volume><issue>11</issue><spage>11731</spage><epage>11744</epage><pages>11731-11744</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>A bipolar dc microgrid is desirable as it enhances the system reliability and efficiency. However, the conventional bipolar dc microgrid requires multiple dc-dc converters to feed the power to the load, which leads to large volume and weight and high cost. In this article, a novel four-port converter is proposed to integrate photovoltaic (PV) module and battery to the bipolar dc microgrid system, realizing the single-stage energy conversion. The main advantages of this converter are that three switches are used to realize PV generation, battery charging and discharging, as well as symmetrical bipolar output voltage, and all input ports and output ports share the common reference ground. Depending on relationships between the energies of the source and the load, three different operation modes are defined. Then, the detailed parameter design is provided by analyzing different operation modes of the converter. Energy management and control strategies of the bipolar dc microgrid using this converter are explained in detail. Finally, experimental verifications are given to illustrate the feasibility and effectiveness of the proposed converter.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2020.2983113</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0889-2632</orcidid><orcidid>https://orcid.org/0000-0002-0616-3340</orcidid><orcidid>https://orcid.org/0000-0002-8335-858X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2020-11, Vol.35 (11), p.11731-11744
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_9050559
source IEEE Electronic Library (IEL) Journals
subjects Batteries
Battery chargers
Bipolar dc microgrid
Capacitors
Charging
Converters
DC-DC power converters
Design parameters
Distributed generation
Energy conversion
Energy management
Microgrids
multiport dc–dc converter
photovoltaic (PV) battery energy system
Photovoltaic cells
Ports
Renewable energy sources
single-stage energy conversion
Switches
System reliability
Topology
title A Nonisolated Symmetric Bipolar Output Four-Port Converter Interfacing PV-Battery System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nonisolated%20Symmetric%20Bipolar%20Output%20Four-Port%20Converter%20Interfacing%20PV-Battery%20System&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Tian,%20Qingxin&rft.date=2020-11-01&rft.volume=35&rft.issue=11&rft.spage=11731&rft.epage=11744&rft.pages=11731-11744&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2020.2983113&rft_dat=%3Cproquest_ieee_%3E2429223942%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-287e92612b977db7d0a941abd90f9dbd3e056fcbeba6d2b166a684f8e47e7333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429223942&rft_id=info:pmid/&rft_ieee_id=9050559&rfr_iscdi=true