Loading…
A Nonisolated Symmetric Bipolar Output Four-Port Converter Interfacing PV-Battery System
A bipolar dc microgrid is desirable as it enhances the system reliability and efficiency. However, the conventional bipolar dc microgrid requires multiple dc-dc converters to feed the power to the load, which leads to large volume and weight and high cost. In this article, a novel four-port converte...
Saved in:
Published in: | IEEE transactions on power electronics 2020-11, Vol.35 (11), p.11731-11744 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-287e92612b977db7d0a941abd90f9dbd3e056fcbeba6d2b166a684f8e47e7333 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-287e92612b977db7d0a941abd90f9dbd3e056fcbeba6d2b166a684f8e47e7333 |
container_end_page | 11744 |
container_issue | 11 |
container_start_page | 11731 |
container_title | IEEE transactions on power electronics |
container_volume | 35 |
creator | Tian, Qingxin Zhou, Guohua Leng, Minrui Xu, Guodong Fan, Xianyan |
description | A bipolar dc microgrid is desirable as it enhances the system reliability and efficiency. However, the conventional bipolar dc microgrid requires multiple dc-dc converters to feed the power to the load, which leads to large volume and weight and high cost. In this article, a novel four-port converter is proposed to integrate photovoltaic (PV) module and battery to the bipolar dc microgrid system, realizing the single-stage energy conversion. The main advantages of this converter are that three switches are used to realize PV generation, battery charging and discharging, as well as symmetrical bipolar output voltage, and all input ports and output ports share the common reference ground. Depending on relationships between the energies of the source and the load, three different operation modes are defined. Then, the detailed parameter design is provided by analyzing different operation modes of the converter. Energy management and control strategies of the bipolar dc microgrid using this converter are explained in detail. Finally, experimental verifications are given to illustrate the feasibility and effectiveness of the proposed converter. |
doi_str_mv | 10.1109/TPEL.2020.2983113 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9050559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9050559</ieee_id><sourcerecordid>2429223942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-287e92612b977db7d0a941abd90f9dbd3e056fcbeba6d2b166a684f8e47e7333</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhYMoWKs_QHwJ-Jw6SfaWx7a0Wii2YBHfQnZ3VrZ0LyZZof_elBZfZpjhnJnDR8gjhwnnoF5228V6IkDARKhMci6vyIiriDPgkF6TEWRZzDKl5C25c24PwKMY-Ih8Tel719auOxiPJf04Ng16Wxd0VvdhZ-lm8P3g6bIbLNt21tN51_6i9Wjpqg21MkXdftPtJ5sZH-ZjuOE8NvfkpjIHhw-XPia75WI3f2PrzetqPl2zQijpmchSVCLhIldpWuZpCSakNnmpoFJlXkqEOKmKHHOTlCLnSWKSLKoyjFJMpZRj8nw-29vuZ0Dn9T4kbcNHLSKhhJAqEkHFz6rCds5ZrHRv68bYo-agT_z0iZ8-8dMXfsHzdPbUiPivVxBDHCv5B91QbIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429223942</pqid></control><display><type>article</type><title>A Nonisolated Symmetric Bipolar Output Four-Port Converter Interfacing PV-Battery System</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tian, Qingxin ; Zhou, Guohua ; Leng, Minrui ; Xu, Guodong ; Fan, Xianyan</creator><creatorcontrib>Tian, Qingxin ; Zhou, Guohua ; Leng, Minrui ; Xu, Guodong ; Fan, Xianyan</creatorcontrib><description>A bipolar dc microgrid is desirable as it enhances the system reliability and efficiency. However, the conventional bipolar dc microgrid requires multiple dc-dc converters to feed the power to the load, which leads to large volume and weight and high cost. In this article, a novel four-port converter is proposed to integrate photovoltaic (PV) module and battery to the bipolar dc microgrid system, realizing the single-stage energy conversion. The main advantages of this converter are that three switches are used to realize PV generation, battery charging and discharging, as well as symmetrical bipolar output voltage, and all input ports and output ports share the common reference ground. Depending on relationships between the energies of the source and the load, three different operation modes are defined. Then, the detailed parameter design is provided by analyzing different operation modes of the converter. Energy management and control strategies of the bipolar dc microgrid using this converter are explained in detail. Finally, experimental verifications are given to illustrate the feasibility and effectiveness of the proposed converter.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2020.2983113</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; Battery chargers ; Bipolar dc microgrid ; Capacitors ; Charging ; Converters ; DC-DC power converters ; Design parameters ; Distributed generation ; Energy conversion ; Energy management ; Microgrids ; multiport dc–dc converter ; photovoltaic (PV) battery energy system ; Photovoltaic cells ; Ports ; Renewable energy sources ; single-stage energy conversion ; Switches ; System reliability ; Topology</subject><ispartof>IEEE transactions on power electronics, 2020-11, Vol.35 (11), p.11731-11744</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-287e92612b977db7d0a941abd90f9dbd3e056fcbeba6d2b166a684f8e47e7333</citedby><cites>FETCH-LOGICAL-c293t-287e92612b977db7d0a941abd90f9dbd3e056fcbeba6d2b166a684f8e47e7333</cites><orcidid>0000-0003-0889-2632 ; 0000-0002-0616-3340 ; 0000-0002-8335-858X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9050559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Tian, Qingxin</creatorcontrib><creatorcontrib>Zhou, Guohua</creatorcontrib><creatorcontrib>Leng, Minrui</creatorcontrib><creatorcontrib>Xu, Guodong</creatorcontrib><creatorcontrib>Fan, Xianyan</creatorcontrib><title>A Nonisolated Symmetric Bipolar Output Four-Port Converter Interfacing PV-Battery System</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>A bipolar dc microgrid is desirable as it enhances the system reliability and efficiency. However, the conventional bipolar dc microgrid requires multiple dc-dc converters to feed the power to the load, which leads to large volume and weight and high cost. In this article, a novel four-port converter is proposed to integrate photovoltaic (PV) module and battery to the bipolar dc microgrid system, realizing the single-stage energy conversion. The main advantages of this converter are that three switches are used to realize PV generation, battery charging and discharging, as well as symmetrical bipolar output voltage, and all input ports and output ports share the common reference ground. Depending on relationships between the energies of the source and the load, three different operation modes are defined. Then, the detailed parameter design is provided by analyzing different operation modes of the converter. Energy management and control strategies of the bipolar dc microgrid using this converter are explained in detail. Finally, experimental verifications are given to illustrate the feasibility and effectiveness of the proposed converter.</description><subject>Batteries</subject><subject>Battery chargers</subject><subject>Bipolar dc microgrid</subject><subject>Capacitors</subject><subject>Charging</subject><subject>Converters</subject><subject>DC-DC power converters</subject><subject>Design parameters</subject><subject>Distributed generation</subject><subject>Energy conversion</subject><subject>Energy management</subject><subject>Microgrids</subject><subject>multiport dc–dc converter</subject><subject>photovoltaic (PV) battery energy system</subject><subject>Photovoltaic cells</subject><subject>Ports</subject><subject>Renewable energy sources</subject><subject>single-stage energy conversion</subject><subject>Switches</subject><subject>System reliability</subject><subject>Topology</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLAzEQhYMoWKs_QHwJ-Jw6SfaWx7a0Wii2YBHfQnZ3VrZ0LyZZof_elBZfZpjhnJnDR8gjhwnnoF5228V6IkDARKhMci6vyIiriDPgkF6TEWRZzDKl5C25c24PwKMY-Ih8Tel719auOxiPJf04Ng16Wxd0VvdhZ-lm8P3g6bIbLNt21tN51_6i9Wjpqg21MkXdftPtJ5sZH-ZjuOE8NvfkpjIHhw-XPia75WI3f2PrzetqPl2zQijpmchSVCLhIldpWuZpCSakNnmpoFJlXkqEOKmKHHOTlCLnSWKSLKoyjFJMpZRj8nw-29vuZ0Dn9T4kbcNHLSKhhJAqEkHFz6rCds5ZrHRv68bYo-agT_z0iZ8-8dMXfsHzdPbUiPivVxBDHCv5B91QbIc</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Tian, Qingxin</creator><creator>Zhou, Guohua</creator><creator>Leng, Minrui</creator><creator>Xu, Guodong</creator><creator>Fan, Xianyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0889-2632</orcidid><orcidid>https://orcid.org/0000-0002-0616-3340</orcidid><orcidid>https://orcid.org/0000-0002-8335-858X</orcidid></search><sort><creationdate>20201101</creationdate><title>A Nonisolated Symmetric Bipolar Output Four-Port Converter Interfacing PV-Battery System</title><author>Tian, Qingxin ; Zhou, Guohua ; Leng, Minrui ; Xu, Guodong ; Fan, Xianyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-287e92612b977db7d0a941abd90f9dbd3e056fcbeba6d2b166a684f8e47e7333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batteries</topic><topic>Battery chargers</topic><topic>Bipolar dc microgrid</topic><topic>Capacitors</topic><topic>Charging</topic><topic>Converters</topic><topic>DC-DC power converters</topic><topic>Design parameters</topic><topic>Distributed generation</topic><topic>Energy conversion</topic><topic>Energy management</topic><topic>Microgrids</topic><topic>multiport dc–dc converter</topic><topic>photovoltaic (PV) battery energy system</topic><topic>Photovoltaic cells</topic><topic>Ports</topic><topic>Renewable energy sources</topic><topic>single-stage energy conversion</topic><topic>Switches</topic><topic>System reliability</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Qingxin</creatorcontrib><creatorcontrib>Zhou, Guohua</creatorcontrib><creatorcontrib>Leng, Minrui</creatorcontrib><creatorcontrib>Xu, Guodong</creatorcontrib><creatorcontrib>Fan, Xianyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Qingxin</au><au>Zhou, Guohua</au><au>Leng, Minrui</au><au>Xu, Guodong</au><au>Fan, Xianyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nonisolated Symmetric Bipolar Output Four-Port Converter Interfacing PV-Battery System</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>35</volume><issue>11</issue><spage>11731</spage><epage>11744</epage><pages>11731-11744</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>A bipolar dc microgrid is desirable as it enhances the system reliability and efficiency. However, the conventional bipolar dc microgrid requires multiple dc-dc converters to feed the power to the load, which leads to large volume and weight and high cost. In this article, a novel four-port converter is proposed to integrate photovoltaic (PV) module and battery to the bipolar dc microgrid system, realizing the single-stage energy conversion. The main advantages of this converter are that three switches are used to realize PV generation, battery charging and discharging, as well as symmetrical bipolar output voltage, and all input ports and output ports share the common reference ground. Depending on relationships between the energies of the source and the load, three different operation modes are defined. Then, the detailed parameter design is provided by analyzing different operation modes of the converter. Energy management and control strategies of the bipolar dc microgrid using this converter are explained in detail. Finally, experimental verifications are given to illustrate the feasibility and effectiveness of the proposed converter.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2020.2983113</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0889-2632</orcidid><orcidid>https://orcid.org/0000-0002-0616-3340</orcidid><orcidid>https://orcid.org/0000-0002-8335-858X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2020-11, Vol.35 (11), p.11731-11744 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_9050559 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Batteries Battery chargers Bipolar dc microgrid Capacitors Charging Converters DC-DC power converters Design parameters Distributed generation Energy conversion Energy management Microgrids multiport dc–dc converter photovoltaic (PV) battery energy system Photovoltaic cells Ports Renewable energy sources single-stage energy conversion Switches System reliability Topology |
title | A Nonisolated Symmetric Bipolar Output Four-Port Converter Interfacing PV-Battery System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nonisolated%20Symmetric%20Bipolar%20Output%20Four-Port%20Converter%20Interfacing%20PV-Battery%20System&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Tian,%20Qingxin&rft.date=2020-11-01&rft.volume=35&rft.issue=11&rft.spage=11731&rft.epage=11744&rft.pages=11731-11744&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2020.2983113&rft_dat=%3Cproquest_ieee_%3E2429223942%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-287e92612b977db7d0a941abd90f9dbd3e056fcbeba6d2b166a684f8e47e7333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429223942&rft_id=info:pmid/&rft_ieee_id=9050559&rfr_iscdi=true |