Loading…
Inverse Multiple Scattering with Phaseless Measurements
We study the problem of reconstructing an object from phaseless measurements in the context of inverse multiple scattering. Our formulation explicitly decouples the variables that represent the unknown object image and the unknown phase, respectively, in the forward model. This enables us to simulta...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1523 |
container_issue | |
container_start_page | 1519 |
container_title | |
container_volume | |
creator | Lodhi, Muhammad Asad Ma, Yanting Mansour, Hassan Boufounos, Petros T. Liu, Dehong |
description | We study the problem of reconstructing an object from phaseless measurements in the context of inverse multiple scattering. Our formulation explicitly decouples the variables that represent the unknown object image and the unknown phase, respectively, in the forward model. This enables us to simultaneously optimize over both unknowns with appropriate regularization for each. The resulting optimization problem is nonconvex due to the nonlinear propagation model for multiple scattering and the nonconvex regularization of the phase variables. Nevertheless, we demonstrate experimentally that we can solve the optimization problem using a variation of the fast iterative shrinkage-thresholding algorithm (FISTA)-a convex algorithm, popular for its speed and simplicity-that converges well in our experiments. Numerical results with both simulated and experimentally measured data show that the proposed method outperforms the state-of-the-art phaseless inverse scattering method. |
doi_str_mv | 10.1109/ICASSP40776.2020.9053430 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9053430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9053430</ieee_id><sourcerecordid>9053430</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-2dbf7c036af7c43129a07b448d157aae727f302ae1af8c92658935f16668fdae3</originalsourceid><addsrcrecordid>eNotj8tKAzEUQKMgWGu_wE1-YMabd7KU4qPQYmEU3JXbmRsbmQ5lkir-vQW7OrvDOYxxAbUQEO4X84emWWtwztYSJNQBjNIKLtgsOC8MBLBWCXPJJlK5UIkAH9fsJucvAPBO-wlzi-Gbxkx8dexLOvTEmxZLoTENn_wnlR1f7zBTTznzFWE-jrSnoeRbdhWxzzQ7c8renx7f5i_V8vX5lLWskgRVKtlto2tBWTxBKyEDgttq7TthHCI56aICiSQw-jZIa3xQJgprrY8dkpqyu39vIqLNYUx7HH8350_1B_TwSGM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Inverse Multiple Scattering with Phaseless Measurements</title><source>IEEE Xplore All Conference Series</source><creator>Lodhi, Muhammad Asad ; Ma, Yanting ; Mansour, Hassan ; Boufounos, Petros T. ; Liu, Dehong</creator><creatorcontrib>Lodhi, Muhammad Asad ; Ma, Yanting ; Mansour, Hassan ; Boufounos, Petros T. ; Liu, Dehong</creatorcontrib><description>We study the problem of reconstructing an object from phaseless measurements in the context of inverse multiple scattering. Our formulation explicitly decouples the variables that represent the unknown object image and the unknown phase, respectively, in the forward model. This enables us to simultaneously optimize over both unknowns with appropriate regularization for each. The resulting optimization problem is nonconvex due to the nonlinear propagation model for multiple scattering and the nonconvex regularization of the phase variables. Nevertheless, we demonstrate experimentally that we can solve the optimization problem using a variation of the fast iterative shrinkage-thresholding algorithm (FISTA)-a convex algorithm, popular for its speed and simplicity-that converges well in our experiments. Numerical results with both simulated and experimentally measured data show that the proposed method outperforms the state-of-the-art phaseless inverse scattering method.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781509066315</identifier><identifier>EISBN: 1509066314</identifier><identifier>DOI: 10.1109/ICASSP40776.2020.9053430</identifier><language>eng</language><publisher>IEEE</publisher><subject>Inverse problems ; Minimization ; nonconvex optimization ; nonlinear forward model ; Numerical models ; Optimization ; Phase measurement ; phase retrieval ; phaseless inverse scattering ; Scattering ; Signal processing algorithms ; total variation regularization</subject><ispartof>ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, p.1519-1523</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9053430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9053430$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lodhi, Muhammad Asad</creatorcontrib><creatorcontrib>Ma, Yanting</creatorcontrib><creatorcontrib>Mansour, Hassan</creatorcontrib><creatorcontrib>Boufounos, Petros T.</creatorcontrib><creatorcontrib>Liu, Dehong</creatorcontrib><title>Inverse Multiple Scattering with Phaseless Measurements</title><title>ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>We study the problem of reconstructing an object from phaseless measurements in the context of inverse multiple scattering. Our formulation explicitly decouples the variables that represent the unknown object image and the unknown phase, respectively, in the forward model. This enables us to simultaneously optimize over both unknowns with appropriate regularization for each. The resulting optimization problem is nonconvex due to the nonlinear propagation model for multiple scattering and the nonconvex regularization of the phase variables. Nevertheless, we demonstrate experimentally that we can solve the optimization problem using a variation of the fast iterative shrinkage-thresholding algorithm (FISTA)-a convex algorithm, popular for its speed and simplicity-that converges well in our experiments. Numerical results with both simulated and experimentally measured data show that the proposed method outperforms the state-of-the-art phaseless inverse scattering method.</description><subject>Inverse problems</subject><subject>Minimization</subject><subject>nonconvex optimization</subject><subject>nonlinear forward model</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Phase measurement</subject><subject>phase retrieval</subject><subject>phaseless inverse scattering</subject><subject>Scattering</subject><subject>Signal processing algorithms</subject><subject>total variation regularization</subject><issn>2379-190X</issn><isbn>9781509066315</isbn><isbn>1509066314</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKAzEUQKMgWGu_wE1-YMabd7KU4qPQYmEU3JXbmRsbmQ5lkir-vQW7OrvDOYxxAbUQEO4X84emWWtwztYSJNQBjNIKLtgsOC8MBLBWCXPJJlK5UIkAH9fsJucvAPBO-wlzi-Gbxkx8dexLOvTEmxZLoTENn_wnlR1f7zBTTznzFWE-jrSnoeRbdhWxzzQ7c8renx7f5i_V8vX5lLWskgRVKtlto2tBWTxBKyEDgttq7TthHCI56aICiSQw-jZIa3xQJgprrY8dkpqyu39vIqLNYUx7HH8350_1B_TwSGM</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Lodhi, Muhammad Asad</creator><creator>Ma, Yanting</creator><creator>Mansour, Hassan</creator><creator>Boufounos, Petros T.</creator><creator>Liu, Dehong</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202005</creationdate><title>Inverse Multiple Scattering with Phaseless Measurements</title><author>Lodhi, Muhammad Asad ; Ma, Yanting ; Mansour, Hassan ; Boufounos, Petros T. ; Liu, Dehong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-2dbf7c036af7c43129a07b448d157aae727f302ae1af8c92658935f16668fdae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Inverse problems</topic><topic>Minimization</topic><topic>nonconvex optimization</topic><topic>nonlinear forward model</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Phase measurement</topic><topic>phase retrieval</topic><topic>phaseless inverse scattering</topic><topic>Scattering</topic><topic>Signal processing algorithms</topic><topic>total variation regularization</topic><toplevel>online_resources</toplevel><creatorcontrib>Lodhi, Muhammad Asad</creatorcontrib><creatorcontrib>Ma, Yanting</creatorcontrib><creatorcontrib>Mansour, Hassan</creatorcontrib><creatorcontrib>Boufounos, Petros T.</creatorcontrib><creatorcontrib>Liu, Dehong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lodhi, Muhammad Asad</au><au>Ma, Yanting</au><au>Mansour, Hassan</au><au>Boufounos, Petros T.</au><au>Liu, Dehong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Inverse Multiple Scattering with Phaseless Measurements</atitle><btitle>ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2020-05</date><risdate>2020</risdate><spage>1519</spage><epage>1523</epage><pages>1519-1523</pages><eissn>2379-190X</eissn><eisbn>9781509066315</eisbn><eisbn>1509066314</eisbn><abstract>We study the problem of reconstructing an object from phaseless measurements in the context of inverse multiple scattering. Our formulation explicitly decouples the variables that represent the unknown object image and the unknown phase, respectively, in the forward model. This enables us to simultaneously optimize over both unknowns with appropriate regularization for each. The resulting optimization problem is nonconvex due to the nonlinear propagation model for multiple scattering and the nonconvex regularization of the phase variables. Nevertheless, we demonstrate experimentally that we can solve the optimization problem using a variation of the fast iterative shrinkage-thresholding algorithm (FISTA)-a convex algorithm, popular for its speed and simplicity-that converges well in our experiments. Numerical results with both simulated and experimentally measured data show that the proposed method outperforms the state-of-the-art phaseless inverse scattering method.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP40776.2020.9053430</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-190X |
ispartof | ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, p.1519-1523 |
issn | 2379-190X |
language | eng |
recordid | cdi_ieee_primary_9053430 |
source | IEEE Xplore All Conference Series |
subjects | Inverse problems Minimization nonconvex optimization nonlinear forward model Numerical models Optimization Phase measurement phase retrieval phaseless inverse scattering Scattering Signal processing algorithms total variation regularization |
title | Inverse Multiple Scattering with Phaseless Measurements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Inverse%20Multiple%20Scattering%20with%20Phaseless%20Measurements&rft.btitle=ICASSP%202020%20-%202020%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Lodhi,%20Muhammad%20Asad&rft.date=2020-05&rft.spage=1519&rft.epage=1523&rft.pages=1519-1523&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP40776.2020.9053430&rft.eisbn=9781509066315&rft.eisbn_list=1509066314&rft_dat=%3Cieee_CHZPO%3E9053430%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-2dbf7c036af7c43129a07b448d157aae727f302ae1af8c92658935f16668fdae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9053430&rfr_iscdi=true |