Loading…

Inverse Multiple Scattering with Phaseless Measurements

We study the problem of reconstructing an object from phaseless measurements in the context of inverse multiple scattering. Our formulation explicitly decouples the variables that represent the unknown object image and the unknown phase, respectively, in the forward model. This enables us to simulta...

Full description

Saved in:
Bibliographic Details
Main Authors: Lodhi, Muhammad Asad, Ma, Yanting, Mansour, Hassan, Boufounos, Petros T., Liu, Dehong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1523
container_issue
container_start_page 1519
container_title
container_volume
creator Lodhi, Muhammad Asad
Ma, Yanting
Mansour, Hassan
Boufounos, Petros T.
Liu, Dehong
description We study the problem of reconstructing an object from phaseless measurements in the context of inverse multiple scattering. Our formulation explicitly decouples the variables that represent the unknown object image and the unknown phase, respectively, in the forward model. This enables us to simultaneously optimize over both unknowns with appropriate regularization for each. The resulting optimization problem is nonconvex due to the nonlinear propagation model for multiple scattering and the nonconvex regularization of the phase variables. Nevertheless, we demonstrate experimentally that we can solve the optimization problem using a variation of the fast iterative shrinkage-thresholding algorithm (FISTA)-a convex algorithm, popular for its speed and simplicity-that converges well in our experiments. Numerical results with both simulated and experimentally measured data show that the proposed method outperforms the state-of-the-art phaseless inverse scattering method.
doi_str_mv 10.1109/ICASSP40776.2020.9053430
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9053430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9053430</ieee_id><sourcerecordid>9053430</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-2dbf7c036af7c43129a07b448d157aae727f302ae1af8c92658935f16668fdae3</originalsourceid><addsrcrecordid>eNotj8tKAzEUQKMgWGu_wE1-YMabd7KU4qPQYmEU3JXbmRsbmQ5lkir-vQW7OrvDOYxxAbUQEO4X84emWWtwztYSJNQBjNIKLtgsOC8MBLBWCXPJJlK5UIkAH9fsJucvAPBO-wlzi-Gbxkx8dexLOvTEmxZLoTENn_wnlR1f7zBTTznzFWE-jrSnoeRbdhWxzzQ7c8renx7f5i_V8vX5lLWskgRVKtlto2tBWTxBKyEDgttq7TthHCI56aICiSQw-jZIa3xQJgprrY8dkpqyu39vIqLNYUx7HH8350_1B_TwSGM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Inverse Multiple Scattering with Phaseless Measurements</title><source>IEEE Xplore All Conference Series</source><creator>Lodhi, Muhammad Asad ; Ma, Yanting ; Mansour, Hassan ; Boufounos, Petros T. ; Liu, Dehong</creator><creatorcontrib>Lodhi, Muhammad Asad ; Ma, Yanting ; Mansour, Hassan ; Boufounos, Petros T. ; Liu, Dehong</creatorcontrib><description>We study the problem of reconstructing an object from phaseless measurements in the context of inverse multiple scattering. Our formulation explicitly decouples the variables that represent the unknown object image and the unknown phase, respectively, in the forward model. This enables us to simultaneously optimize over both unknowns with appropriate regularization for each. The resulting optimization problem is nonconvex due to the nonlinear propagation model for multiple scattering and the nonconvex regularization of the phase variables. Nevertheless, we demonstrate experimentally that we can solve the optimization problem using a variation of the fast iterative shrinkage-thresholding algorithm (FISTA)-a convex algorithm, popular for its speed and simplicity-that converges well in our experiments. Numerical results with both simulated and experimentally measured data show that the proposed method outperforms the state-of-the-art phaseless inverse scattering method.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781509066315</identifier><identifier>EISBN: 1509066314</identifier><identifier>DOI: 10.1109/ICASSP40776.2020.9053430</identifier><language>eng</language><publisher>IEEE</publisher><subject>Inverse problems ; Minimization ; nonconvex optimization ; nonlinear forward model ; Numerical models ; Optimization ; Phase measurement ; phase retrieval ; phaseless inverse scattering ; Scattering ; Signal processing algorithms ; total variation regularization</subject><ispartof>ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, p.1519-1523</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9053430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9053430$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lodhi, Muhammad Asad</creatorcontrib><creatorcontrib>Ma, Yanting</creatorcontrib><creatorcontrib>Mansour, Hassan</creatorcontrib><creatorcontrib>Boufounos, Petros T.</creatorcontrib><creatorcontrib>Liu, Dehong</creatorcontrib><title>Inverse Multiple Scattering with Phaseless Measurements</title><title>ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>We study the problem of reconstructing an object from phaseless measurements in the context of inverse multiple scattering. Our formulation explicitly decouples the variables that represent the unknown object image and the unknown phase, respectively, in the forward model. This enables us to simultaneously optimize over both unknowns with appropriate regularization for each. The resulting optimization problem is nonconvex due to the nonlinear propagation model for multiple scattering and the nonconvex regularization of the phase variables. Nevertheless, we demonstrate experimentally that we can solve the optimization problem using a variation of the fast iterative shrinkage-thresholding algorithm (FISTA)-a convex algorithm, popular for its speed and simplicity-that converges well in our experiments. Numerical results with both simulated and experimentally measured data show that the proposed method outperforms the state-of-the-art phaseless inverse scattering method.</description><subject>Inverse problems</subject><subject>Minimization</subject><subject>nonconvex optimization</subject><subject>nonlinear forward model</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Phase measurement</subject><subject>phase retrieval</subject><subject>phaseless inverse scattering</subject><subject>Scattering</subject><subject>Signal processing algorithms</subject><subject>total variation regularization</subject><issn>2379-190X</issn><isbn>9781509066315</isbn><isbn>1509066314</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKAzEUQKMgWGu_wE1-YMabd7KU4qPQYmEU3JXbmRsbmQ5lkir-vQW7OrvDOYxxAbUQEO4X84emWWtwztYSJNQBjNIKLtgsOC8MBLBWCXPJJlK5UIkAH9fsJucvAPBO-wlzi-Gbxkx8dexLOvTEmxZLoTENn_wnlR1f7zBTTznzFWE-jrSnoeRbdhWxzzQ7c8renx7f5i_V8vX5lLWskgRVKtlto2tBWTxBKyEDgttq7TthHCI56aICiSQw-jZIa3xQJgprrY8dkpqyu39vIqLNYUx7HH8350_1B_TwSGM</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Lodhi, Muhammad Asad</creator><creator>Ma, Yanting</creator><creator>Mansour, Hassan</creator><creator>Boufounos, Petros T.</creator><creator>Liu, Dehong</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202005</creationdate><title>Inverse Multiple Scattering with Phaseless Measurements</title><author>Lodhi, Muhammad Asad ; Ma, Yanting ; Mansour, Hassan ; Boufounos, Petros T. ; Liu, Dehong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-2dbf7c036af7c43129a07b448d157aae727f302ae1af8c92658935f16668fdae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Inverse problems</topic><topic>Minimization</topic><topic>nonconvex optimization</topic><topic>nonlinear forward model</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Phase measurement</topic><topic>phase retrieval</topic><topic>phaseless inverse scattering</topic><topic>Scattering</topic><topic>Signal processing algorithms</topic><topic>total variation regularization</topic><toplevel>online_resources</toplevel><creatorcontrib>Lodhi, Muhammad Asad</creatorcontrib><creatorcontrib>Ma, Yanting</creatorcontrib><creatorcontrib>Mansour, Hassan</creatorcontrib><creatorcontrib>Boufounos, Petros T.</creatorcontrib><creatorcontrib>Liu, Dehong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lodhi, Muhammad Asad</au><au>Ma, Yanting</au><au>Mansour, Hassan</au><au>Boufounos, Petros T.</au><au>Liu, Dehong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Inverse Multiple Scattering with Phaseless Measurements</atitle><btitle>ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2020-05</date><risdate>2020</risdate><spage>1519</spage><epage>1523</epage><pages>1519-1523</pages><eissn>2379-190X</eissn><eisbn>9781509066315</eisbn><eisbn>1509066314</eisbn><abstract>We study the problem of reconstructing an object from phaseless measurements in the context of inverse multiple scattering. Our formulation explicitly decouples the variables that represent the unknown object image and the unknown phase, respectively, in the forward model. This enables us to simultaneously optimize over both unknowns with appropriate regularization for each. The resulting optimization problem is nonconvex due to the nonlinear propagation model for multiple scattering and the nonconvex regularization of the phase variables. Nevertheless, we demonstrate experimentally that we can solve the optimization problem using a variation of the fast iterative shrinkage-thresholding algorithm (FISTA)-a convex algorithm, popular for its speed and simplicity-that converges well in our experiments. Numerical results with both simulated and experimentally measured data show that the proposed method outperforms the state-of-the-art phaseless inverse scattering method.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP40776.2020.9053430</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-190X
ispartof ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, p.1519-1523
issn 2379-190X
language eng
recordid cdi_ieee_primary_9053430
source IEEE Xplore All Conference Series
subjects Inverse problems
Minimization
nonconvex optimization
nonlinear forward model
Numerical models
Optimization
Phase measurement
phase retrieval
phaseless inverse scattering
Scattering
Signal processing algorithms
total variation regularization
title Inverse Multiple Scattering with Phaseless Measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Inverse%20Multiple%20Scattering%20with%20Phaseless%20Measurements&rft.btitle=ICASSP%202020%20-%202020%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Lodhi,%20Muhammad%20Asad&rft.date=2020-05&rft.spage=1519&rft.epage=1523&rft.pages=1519-1523&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP40776.2020.9053430&rft.eisbn=9781509066315&rft.eisbn_list=1509066314&rft_dat=%3Cieee_CHZPO%3E9053430%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-2dbf7c036af7c43129a07b448d157aae727f302ae1af8c92658935f16668fdae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9053430&rfr_iscdi=true