Loading…

Evaluation of Deep-Learning-Based Voice Activity Detectors and Room Impulse Response Models in Reverberant Environments

State-of-the-art deep-learning-based voice activity detectors (VADs) are often trained with anechoic data. However, real acoustic environments are generally reverberant, which causes the performance to significantly deteriorate. To mitigate this mismatch between training data and real data, we simul...

Full description

Saved in:
Bibliographic Details
Main Authors: Ivry, Amir, Cohen, Israel, Berdugo, Baruch
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:State-of-the-art deep-learning-based voice activity detectors (VADs) are often trained with anechoic data. However, real acoustic environments are generally reverberant, which causes the performance to significantly deteriorate. To mitigate this mismatch between training data and real data, we simulate an augmented training set that contains nearly five million utterances. This extension comprises of anechoic utterances and their reverberant modifications, generated by convolutions of the anechoic utterances with a variety of room impulse responses (RIRs). We consider five different models to generate RIRs, and five different VADs that are trained with the augmented training set. We test all trained systems in three different real reverberant environments. Experimental results show 20% increase on average in accuracy, precision and recall for all detectors and response models, compared to anechoic training. Furthermore, one of the RIR models consistently yields better performance than the other models, for all the tested VADs. Additionally, one of the VADs consistently outperformed the other VADs in all experiments.
ISSN:2379-190X
DOI:10.1109/ICASSP40776.2020.9054610