Loading…
Epileptic Seizure Classification With Symmetric and Hybrid Bilinear Models
Epilepsy affects nearly \text{1}\% of the global population, of which two thirds can be treated by anti-epileptic drugs and a much lower percentage by surgery. Diagnostic procedures for epilepsy and monitoring are highly specialized and labour-intensive. The accuracy of the diagnosis is also complic...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2020-10, Vol.24 (10), p.2844-2851 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-a128407449ac313797e716bfd00f3ad64c21935d8d891a75b49fc5a487479be43 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-a128407449ac313797e716bfd00f3ad64c21935d8d891a75b49fc5a487479be43 |
container_end_page | 2851 |
container_issue | 10 |
container_start_page | 2844 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 24 |
creator | Liu, Tennison Truong, Nhan Duy Nikpour, Armin Zhou, Luping Kavehei, Omid |
description | Epilepsy affects nearly \text{1}\% of the global population, of which two thirds can be treated by anti-epileptic drugs and a much lower percentage by surgery. Diagnostic procedures for epilepsy and monitoring are highly specialized and labour-intensive. The accuracy of the diagnosis is also complicated by overlapping medical symptoms, varying levels of experience and inter-observer variability among clinical professions. This paper proposes a novel hybrid bilinear deep learning network with an application in the clinical procedures of epilepsy classification diagnosis, where the use of surface electroencephalogram (sEEG) and audiovisual monitoring is standard practice. Hybrid bilinear models based on two types of feature extractors, namely Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), are trained using Short-Time Fourier Transform (STFT) of one-second sEEG. In the proposed hybrid models, CNNs extract spatio-temporal patterns, while RNNs focus on the characteristics of temporal dynamics in relatively longer intervals given the same input data. Second-order features, based on interactions between these spatio-temporal features are further explored by bilinear pooling and used for epilepsy classification. Our proposed methods obtain an F1-score of \text{97.4}\% on the Temple University Hospital Seizure Corpus and \text{97.2}\% on the EPILEPSIAE dataset, comparing favourably to existing benchmarks for sEEG-based seizure type classification. The open-source implementation of this study is available at https://github.com/NeuroSyd/Epileptic-Seizure-Classification . |
doi_str_mv | 10.1109/JBHI.2020.2984128 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9055195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9055195</ieee_id><sourcerecordid>2449309684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a128407449ac313797e716bfd00f3ad64c21935d8d891a75b49fc5a487479be43</originalsourceid><addsrcrecordid>eNpdkM1LwzAchoMobsz9ASJIwYuXzny1TY5uTLcx8TDFY0jbXzGjHzNpD_OvN2UfB5NDQvL8Xl4ehG4JnhCC5dNqulhOKKZ4QqXghIoLNKQkFiGlWFye7kTyARo7t8V-Cf8k42s0YJRyQRgbotV8Z0rYtSYLNmB-OwvBrNTOmcJkujVNHXyZ9jvY7KsKWuspXefBYp9akwdTU5oatA3emhxKd4OuCl06GB_PEfp8mX_MFuH6_XU5e16HGeOyDbWvynHCudQZIyyRCSQkTosc44LpPOaZL82iXORCEp1EKZdFFmkuEp7IFDgbocdD7s42Px24VlXGZVCWuoamc4oyEXPmd-zRh3_otuls7dsp6gswLGPRB5IDldnGOQuF2llTabtXBKvetepdq961Orr2M_fH5C6tID9PnMx64O4AGAA4f0scRURG7A9Oz4BA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449309684</pqid></control><display><type>article</type><title>Epileptic Seizure Classification With Symmetric and Hybrid Bilinear Models</title><source>IEEE Xplore (Online service)</source><creator>Liu, Tennison ; Truong, Nhan Duy ; Nikpour, Armin ; Zhou, Luping ; Kavehei, Omid</creator><creatorcontrib>Liu, Tennison ; Truong, Nhan Duy ; Nikpour, Armin ; Zhou, Luping ; Kavehei, Omid</creatorcontrib><description><![CDATA[Epilepsy affects nearly <inline-formula><tex-math notation="LaTeX">\text{1}\%</tex-math></inline-formula> of the global population, of which two thirds can be treated by anti-epileptic drugs and a much lower percentage by surgery. Diagnostic procedures for epilepsy and monitoring are highly specialized and labour-intensive. The accuracy of the diagnosis is also complicated by overlapping medical symptoms, varying levels of experience and inter-observer variability among clinical professions. This paper proposes a novel hybrid bilinear deep learning network with an application in the clinical procedures of epilepsy classification diagnosis, where the use of surface electroencephalogram (sEEG) and audiovisual monitoring is standard practice. Hybrid bilinear models based on two types of feature extractors, namely Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), are trained using Short-Time Fourier Transform (STFT) of one-second sEEG. In the proposed hybrid models, CNNs extract spatio-temporal patterns, while RNNs focus on the characteristics of temporal dynamics in relatively longer intervals given the same input data. Second-order features, based on interactions between these spatio-temporal features are further explored by bilinear pooling and used for epilepsy classification. Our proposed methods obtain an F1-score of <inline-formula><tex-math notation="LaTeX">\text{97.4}\%</tex-math></inline-formula> on the Temple University Hospital Seizure Corpus and <inline-formula><tex-math notation="LaTeX">\text{97.2}\%</tex-math></inline-formula> on the EPILEPSIAE dataset, comparing favourably to existing benchmarks for sEEG-based seizure type classification. The open-source implementation of this study is available at https://github.com/NeuroSyd/Epileptic-Seizure-Classification .]]></description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2020.2984128</identifier><identifier>PMID: 32248133</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Benchmarks ; bilinear models ; Brain modeling ; Classification ; Convulsions & seizures ; Deep Learning ; Diagnosis ; Diagnosis, Computer-Assisted - methods ; Diagnostic systems ; EEG ; Electroencephalography ; Electroencephalography - methods ; Epilepsy ; epileptic seizure classification ; Feature extraction ; Fourier Analysis ; Fourier transforms ; Humans ; Machine learning ; Medical diagnosis ; Medical diagnostic imaging ; Monitoring ; Neural networks ; Neural Networks, Computer ; Recurrent neural networks ; Seizures ; Seizures - classification ; Seizures - diagnosis ; Sensory integration ; Surgery ; Task analysis ; Temporal variations</subject><ispartof>IEEE journal of biomedical and health informatics, 2020-10, Vol.24 (10), p.2844-2851</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-a128407449ac313797e716bfd00f3ad64c21935d8d891a75b49fc5a487479be43</citedby><cites>FETCH-LOGICAL-c349t-a128407449ac313797e716bfd00f3ad64c21935d8d891a75b49fc5a487479be43</cites><orcidid>0000-0002-2753-5553 ; 0000-0003-4350-8026 ; 0000-0002-1664-5212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9055195$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32248133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Tennison</creatorcontrib><creatorcontrib>Truong, Nhan Duy</creatorcontrib><creatorcontrib>Nikpour, Armin</creatorcontrib><creatorcontrib>Zhou, Luping</creatorcontrib><creatorcontrib>Kavehei, Omid</creatorcontrib><title>Epileptic Seizure Classification With Symmetric and Hybrid Bilinear Models</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description><![CDATA[Epilepsy affects nearly <inline-formula><tex-math notation="LaTeX">\text{1}\%</tex-math></inline-formula> of the global population, of which two thirds can be treated by anti-epileptic drugs and a much lower percentage by surgery. Diagnostic procedures for epilepsy and monitoring are highly specialized and labour-intensive. The accuracy of the diagnosis is also complicated by overlapping medical symptoms, varying levels of experience and inter-observer variability among clinical professions. This paper proposes a novel hybrid bilinear deep learning network with an application in the clinical procedures of epilepsy classification diagnosis, where the use of surface electroencephalogram (sEEG) and audiovisual monitoring is standard practice. Hybrid bilinear models based on two types of feature extractors, namely Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), are trained using Short-Time Fourier Transform (STFT) of one-second sEEG. In the proposed hybrid models, CNNs extract spatio-temporal patterns, while RNNs focus on the characteristics of temporal dynamics in relatively longer intervals given the same input data. Second-order features, based on interactions between these spatio-temporal features are further explored by bilinear pooling and used for epilepsy classification. Our proposed methods obtain an F1-score of <inline-formula><tex-math notation="LaTeX">\text{97.4}\%</tex-math></inline-formula> on the Temple University Hospital Seizure Corpus and <inline-formula><tex-math notation="LaTeX">\text{97.2}\%</tex-math></inline-formula> on the EPILEPSIAE dataset, comparing favourably to existing benchmarks for sEEG-based seizure type classification. The open-source implementation of this study is available at https://github.com/NeuroSyd/Epileptic-Seizure-Classification .]]></description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Benchmarks</subject><subject>bilinear models</subject><subject>Brain modeling</subject><subject>Classification</subject><subject>Convulsions & seizures</subject><subject>Deep Learning</subject><subject>Diagnosis</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnostic systems</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy</subject><subject>epileptic seizure classification</subject><subject>Feature extraction</subject><subject>Fourier Analysis</subject><subject>Fourier transforms</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Medical diagnostic imaging</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Recurrent neural networks</subject><subject>Seizures</subject><subject>Seizures - classification</subject><subject>Seizures - diagnosis</subject><subject>Sensory integration</subject><subject>Surgery</subject><subject>Task analysis</subject><subject>Temporal variations</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LwzAchoMobsz9ASJIwYuXzny1TY5uTLcx8TDFY0jbXzGjHzNpD_OvN2UfB5NDQvL8Xl4ehG4JnhCC5dNqulhOKKZ4QqXghIoLNKQkFiGlWFye7kTyARo7t8V-Cf8k42s0YJRyQRgbotV8Z0rYtSYLNmB-OwvBrNTOmcJkujVNHXyZ9jvY7KsKWuspXefBYp9akwdTU5oatA3emhxKd4OuCl06GB_PEfp8mX_MFuH6_XU5e16HGeOyDbWvynHCudQZIyyRCSQkTosc44LpPOaZL82iXORCEp1EKZdFFmkuEp7IFDgbocdD7s42Px24VlXGZVCWuoamc4oyEXPmd-zRh3_otuls7dsp6gswLGPRB5IDldnGOQuF2llTabtXBKvetepdq961Orr2M_fH5C6tID9PnMx64O4AGAA4f0scRURG7A9Oz4BA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Liu, Tennison</creator><creator>Truong, Nhan Duy</creator><creator>Nikpour, Armin</creator><creator>Zhou, Luping</creator><creator>Kavehei, Omid</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2753-5553</orcidid><orcidid>https://orcid.org/0000-0003-4350-8026</orcidid><orcidid>https://orcid.org/0000-0002-1664-5212</orcidid></search><sort><creationdate>20201001</creationdate><title>Epileptic Seizure Classification With Symmetric and Hybrid Bilinear Models</title><author>Liu, Tennison ; Truong, Nhan Duy ; Nikpour, Armin ; Zhou, Luping ; Kavehei, Omid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a128407449ac313797e716bfd00f3ad64c21935d8d891a75b49fc5a487479be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Benchmarks</topic><topic>bilinear models</topic><topic>Brain modeling</topic><topic>Classification</topic><topic>Convulsions & seizures</topic><topic>Deep Learning</topic><topic>Diagnosis</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnostic systems</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy</topic><topic>epileptic seizure classification</topic><topic>Feature extraction</topic><topic>Fourier Analysis</topic><topic>Fourier transforms</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Medical diagnostic imaging</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Recurrent neural networks</topic><topic>Seizures</topic><topic>Seizures - classification</topic><topic>Seizures - diagnosis</topic><topic>Sensory integration</topic><topic>Surgery</topic><topic>Task analysis</topic><topic>Temporal variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tennison</creatorcontrib><creatorcontrib>Truong, Nhan Duy</creatorcontrib><creatorcontrib>Nikpour, Armin</creatorcontrib><creatorcontrib>Zhou, Luping</creatorcontrib><creatorcontrib>Kavehei, Omid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tennison</au><au>Truong, Nhan Duy</au><au>Nikpour, Armin</au><au>Zhou, Luping</au><au>Kavehei, Omid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epileptic Seizure Classification With Symmetric and Hybrid Bilinear Models</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>24</volume><issue>10</issue><spage>2844</spage><epage>2851</epage><pages>2844-2851</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract><![CDATA[Epilepsy affects nearly <inline-formula><tex-math notation="LaTeX">\text{1}\%</tex-math></inline-formula> of the global population, of which two thirds can be treated by anti-epileptic drugs and a much lower percentage by surgery. Diagnostic procedures for epilepsy and monitoring are highly specialized and labour-intensive. The accuracy of the diagnosis is also complicated by overlapping medical symptoms, varying levels of experience and inter-observer variability among clinical professions. This paper proposes a novel hybrid bilinear deep learning network with an application in the clinical procedures of epilepsy classification diagnosis, where the use of surface electroencephalogram (sEEG) and audiovisual monitoring is standard practice. Hybrid bilinear models based on two types of feature extractors, namely Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), are trained using Short-Time Fourier Transform (STFT) of one-second sEEG. In the proposed hybrid models, CNNs extract spatio-temporal patterns, while RNNs focus on the characteristics of temporal dynamics in relatively longer intervals given the same input data. Second-order features, based on interactions between these spatio-temporal features are further explored by bilinear pooling and used for epilepsy classification. Our proposed methods obtain an F1-score of <inline-formula><tex-math notation="LaTeX">\text{97.4}\%</tex-math></inline-formula> on the Temple University Hospital Seizure Corpus and <inline-formula><tex-math notation="LaTeX">\text{97.2}\%</tex-math></inline-formula> on the EPILEPSIAE dataset, comparing favourably to existing benchmarks for sEEG-based seizure type classification. The open-source implementation of this study is available at https://github.com/NeuroSyd/Epileptic-Seizure-Classification .]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>32248133</pmid><doi>10.1109/JBHI.2020.2984128</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2753-5553</orcidid><orcidid>https://orcid.org/0000-0003-4350-8026</orcidid><orcidid>https://orcid.org/0000-0002-1664-5212</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2020-10, Vol.24 (10), p.2844-2851 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_ieee_primary_9055195 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Artificial neural networks Benchmarks bilinear models Brain modeling Classification Convulsions & seizures Deep Learning Diagnosis Diagnosis, Computer-Assisted - methods Diagnostic systems EEG Electroencephalography Electroencephalography - methods Epilepsy epileptic seizure classification Feature extraction Fourier Analysis Fourier transforms Humans Machine learning Medical diagnosis Medical diagnostic imaging Monitoring Neural networks Neural Networks, Computer Recurrent neural networks Seizures Seizures - classification Seizures - diagnosis Sensory integration Surgery Task analysis Temporal variations |
title | Epileptic Seizure Classification With Symmetric and Hybrid Bilinear Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epileptic%20Seizure%20Classification%20With%20Symmetric%20and%20Hybrid%20Bilinear%20Models&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Liu,%20Tennison&rft.date=2020-10-01&rft.volume=24&rft.issue=10&rft.spage=2844&rft.epage=2851&rft.pages=2844-2851&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2020.2984128&rft_dat=%3Cproquest_ieee_%3E2449309684%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-a128407449ac313797e716bfd00f3ad64c21935d8d891a75b49fc5a487479be43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2449309684&rft_id=info:pmid/32248133&rft_ieee_id=9055195&rfr_iscdi=true |