Loading…
Decoding Semantic Categories from EEG Activity in Object-Based Decision Tasks
This study explores the potential of decoding semantic categories from EEG-activity for the use in Silent Speech Brain-Computer Interfaces (BCI). We used object-based decision tasks to evoke conscious semantic processing for five different semantic categories in the participants cerebral cortical st...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Rekrut, Maurice Sharma, Mansi Schmitt, Matthias Alexandersson, Jan Kruger, Antonio |
description | This study explores the potential of decoding semantic categories from EEG-activity for the use in Silent Speech Brain-Computer Interfaces (BCI). We used object-based decision tasks to evoke conscious semantic processing for five different semantic categories in the participants cerebral cortical structures and implemented different feature extraction and classification methods to evaluate possible setups for semantic category detection in BCIs. All of the tested classification methods exceeded the chance level for training and testing on the data of the individual and even for a cross-subject condition. The best individual accuracy achieved was 84.61% for a Common Spatial Pattern (CSP) feature extraction method and Random Forrest (RF) classifier presented for the first time in a 5-class classification task illustrating the potential of this approach for possible future use in Silent Speech BCIs. |
doi_str_mv | 10.1109/BCI48061.2020.9061628 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9061628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9061628</ieee_id><sourcerecordid>9061628</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-53c846a0e1a361d32b0ce49bbd3c8aea99b79d7a3007d5a67b01635d8ea098a13</originalsourceid><addsrcrecordid>eNo1kM1Kw0AUhUdFsNY8gQjzAql3ZpL5WbYx1kKlC-u63GRuy1STSCYIffsGrKtz4OM7i8PYk4CZEOCeF8Uqs6DFTIKEmRublvaKJc5YYaQVmQHjrtlE5kamRht5w-7_gXZ3LInxCABKWOcgm7D3F6o7H9oD_6AG2yHUvMCBDl0fKPJ93zW8LJd8Xg_hNwwnHlq-qY5UD-kCI3k-6iGGruVbjF_xgd3u8TtScskp-3wtt8Vbut4sV8V8nQYJakhzVdtMI5BApYVXsoKaMldVfgRI6FxlnDeoAIzPUZsKhFa5t4TgLAo1ZY9_u4GIdj99aLA_7S5vqDOre1C_</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Decoding Semantic Categories from EEG Activity in Object-Based Decision Tasks</title><source>IEEE Xplore All Conference Series</source><creator>Rekrut, Maurice ; Sharma, Mansi ; Schmitt, Matthias ; Alexandersson, Jan ; Kruger, Antonio</creator><creatorcontrib>Rekrut, Maurice ; Sharma, Mansi ; Schmitt, Matthias ; Alexandersson, Jan ; Kruger, Antonio</creatorcontrib><description>This study explores the potential of decoding semantic categories from EEG-activity for the use in Silent Speech Brain-Computer Interfaces (BCI). We used object-based decision tasks to evoke conscious semantic processing for five different semantic categories in the participants cerebral cortical structures and implemented different feature extraction and classification methods to evaluate possible setups for semantic category detection in BCIs. All of the tested classification methods exceeded the chance level for training and testing on the data of the individual and even for a cross-subject condition. The best individual accuracy achieved was 84.61% for a Common Spatial Pattern (CSP) feature extraction method and Random Forrest (RF) classifier presented for the first time in a 5-class classification task illustrating the potential of this approach for possible future use in Silent Speech BCIs.</description><identifier>ISBN: 1728147069</identifier><identifier>ISBN: 9781728147062</identifier><identifier>EISSN: 2572-7672</identifier><identifier>EISBN: 9781728147079</identifier><identifier>EISBN: 1728147077</identifier><identifier>DOI: 10.1109/BCI48061.2020.9061628</identifier><language>eng</language><publisher>IEEE</publisher><subject>BCI ; Brain ; Cutoff frequency ; EEG ; Electroencephalography ; Feature extraction ; Semantic Processing ; Semantics ; Silent Speech ; Speech processing ; Task analysis</subject><ispartof>2020 8th International Winter Conference on Brain-Computer Interface (BCI), 2020, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9061628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9061628$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rekrut, Maurice</creatorcontrib><creatorcontrib>Sharma, Mansi</creatorcontrib><creatorcontrib>Schmitt, Matthias</creatorcontrib><creatorcontrib>Alexandersson, Jan</creatorcontrib><creatorcontrib>Kruger, Antonio</creatorcontrib><title>Decoding Semantic Categories from EEG Activity in Object-Based Decision Tasks</title><title>2020 8th International Winter Conference on Brain-Computer Interface (BCI)</title><addtitle>BCI</addtitle><description>This study explores the potential of decoding semantic categories from EEG-activity for the use in Silent Speech Brain-Computer Interfaces (BCI). We used object-based decision tasks to evoke conscious semantic processing for five different semantic categories in the participants cerebral cortical structures and implemented different feature extraction and classification methods to evaluate possible setups for semantic category detection in BCIs. All of the tested classification methods exceeded the chance level for training and testing on the data of the individual and even for a cross-subject condition. The best individual accuracy achieved was 84.61% for a Common Spatial Pattern (CSP) feature extraction method and Random Forrest (RF) classifier presented for the first time in a 5-class classification task illustrating the potential of this approach for possible future use in Silent Speech BCIs.</description><subject>BCI</subject><subject>Brain</subject><subject>Cutoff frequency</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Semantic Processing</subject><subject>Semantics</subject><subject>Silent Speech</subject><subject>Speech processing</subject><subject>Task analysis</subject><issn>2572-7672</issn><isbn>1728147069</isbn><isbn>9781728147062</isbn><isbn>9781728147079</isbn><isbn>1728147077</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1Kw0AUhUdFsNY8gQjzAql3ZpL5WbYx1kKlC-u63GRuy1STSCYIffsGrKtz4OM7i8PYk4CZEOCeF8Uqs6DFTIKEmRublvaKJc5YYaQVmQHjrtlE5kamRht5w-7_gXZ3LInxCABKWOcgm7D3F6o7H9oD_6AG2yHUvMCBDl0fKPJ93zW8LJd8Xg_hNwwnHlq-qY5UD-kCI3k-6iGGruVbjF_xgd3u8TtScskp-3wtt8Vbut4sV8V8nQYJakhzVdtMI5BApYVXsoKaMldVfgRI6FxlnDeoAIzPUZsKhFa5t4TgLAo1ZY9_u4GIdj99aLA_7S5vqDOre1C_</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Rekrut, Maurice</creator><creator>Sharma, Mansi</creator><creator>Schmitt, Matthias</creator><creator>Alexandersson, Jan</creator><creator>Kruger, Antonio</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202002</creationdate><title>Decoding Semantic Categories from EEG Activity in Object-Based Decision Tasks</title><author>Rekrut, Maurice ; Sharma, Mansi ; Schmitt, Matthias ; Alexandersson, Jan ; Kruger, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-53c846a0e1a361d32b0ce49bbd3c8aea99b79d7a3007d5a67b01635d8ea098a13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BCI</topic><topic>Brain</topic><topic>Cutoff frequency</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Semantic Processing</topic><topic>Semantics</topic><topic>Silent Speech</topic><topic>Speech processing</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Rekrut, Maurice</creatorcontrib><creatorcontrib>Sharma, Mansi</creatorcontrib><creatorcontrib>Schmitt, Matthias</creatorcontrib><creatorcontrib>Alexandersson, Jan</creatorcontrib><creatorcontrib>Kruger, Antonio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rekrut, Maurice</au><au>Sharma, Mansi</au><au>Schmitt, Matthias</au><au>Alexandersson, Jan</au><au>Kruger, Antonio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Decoding Semantic Categories from EEG Activity in Object-Based Decision Tasks</atitle><btitle>2020 8th International Winter Conference on Brain-Computer Interface (BCI)</btitle><stitle>BCI</stitle><date>2020-02</date><risdate>2020</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2572-7672</eissn><isbn>1728147069</isbn><isbn>9781728147062</isbn><eisbn>9781728147079</eisbn><eisbn>1728147077</eisbn><abstract>This study explores the potential of decoding semantic categories from EEG-activity for the use in Silent Speech Brain-Computer Interfaces (BCI). We used object-based decision tasks to evoke conscious semantic processing for five different semantic categories in the participants cerebral cortical structures and implemented different feature extraction and classification methods to evaluate possible setups for semantic category detection in BCIs. All of the tested classification methods exceeded the chance level for training and testing on the data of the individual and even for a cross-subject condition. The best individual accuracy achieved was 84.61% for a Common Spatial Pattern (CSP) feature extraction method and Random Forrest (RF) classifier presented for the first time in a 5-class classification task illustrating the potential of this approach for possible future use in Silent Speech BCIs.</abstract><pub>IEEE</pub><doi>10.1109/BCI48061.2020.9061628</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1728147069 |
ispartof | 2020 8th International Winter Conference on Brain-Computer Interface (BCI), 2020, p.1-7 |
issn | 2572-7672 |
language | eng |
recordid | cdi_ieee_primary_9061628 |
source | IEEE Xplore All Conference Series |
subjects | BCI Brain Cutoff frequency EEG Electroencephalography Feature extraction Semantic Processing Semantics Silent Speech Speech processing Task analysis |
title | Decoding Semantic Categories from EEG Activity in Object-Based Decision Tasks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Decoding%20Semantic%20Categories%20from%20EEG%20Activity%20in%20Object-Based%20Decision%20Tasks&rft.btitle=2020%208th%20International%20Winter%20Conference%20on%20Brain-Computer%20Interface%20(BCI)&rft.au=Rekrut,%20Maurice&rft.date=2020-02&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2572-7672&rft.isbn=1728147069&rft.isbn_list=9781728147062&rft_id=info:doi/10.1109/BCI48061.2020.9061628&rft.eisbn=9781728147079&rft.eisbn_list=1728147077&rft_dat=%3Cieee_CHZPO%3E9061628%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-53c846a0e1a361d32b0ce49bbd3c8aea99b79d7a3007d5a67b01635d8ea098a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9061628&rfr_iscdi=true |