Loading…

Decoding Semantic Categories from EEG Activity in Object-Based Decision Tasks

This study explores the potential of decoding semantic categories from EEG-activity for the use in Silent Speech Brain-Computer Interfaces (BCI). We used object-based decision tasks to evoke conscious semantic processing for five different semantic categories in the participants cerebral cortical st...

Full description

Saved in:
Bibliographic Details
Main Authors: Rekrut, Maurice, Sharma, Mansi, Schmitt, Matthias, Alexandersson, Jan, Kruger, Antonio
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Rekrut, Maurice
Sharma, Mansi
Schmitt, Matthias
Alexandersson, Jan
Kruger, Antonio
description This study explores the potential of decoding semantic categories from EEG-activity for the use in Silent Speech Brain-Computer Interfaces (BCI). We used object-based decision tasks to evoke conscious semantic processing for five different semantic categories in the participants cerebral cortical structures and implemented different feature extraction and classification methods to evaluate possible setups for semantic category detection in BCIs. All of the tested classification methods exceeded the chance level for training and testing on the data of the individual and even for a cross-subject condition. The best individual accuracy achieved was 84.61% for a Common Spatial Pattern (CSP) feature extraction method and Random Forrest (RF) classifier presented for the first time in a 5-class classification task illustrating the potential of this approach for possible future use in Silent Speech BCIs.
doi_str_mv 10.1109/BCI48061.2020.9061628
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9061628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9061628</ieee_id><sourcerecordid>9061628</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-53c846a0e1a361d32b0ce49bbd3c8aea99b79d7a3007d5a67b01635d8ea098a13</originalsourceid><addsrcrecordid>eNo1kM1Kw0AUhUdFsNY8gQjzAql3ZpL5WbYx1kKlC-u63GRuy1STSCYIffsGrKtz4OM7i8PYk4CZEOCeF8Uqs6DFTIKEmRublvaKJc5YYaQVmQHjrtlE5kamRht5w-7_gXZ3LInxCABKWOcgm7D3F6o7H9oD_6AG2yHUvMCBDl0fKPJ93zW8LJd8Xg_hNwwnHlq-qY5UD-kCI3k-6iGGruVbjF_xgd3u8TtScskp-3wtt8Vbut4sV8V8nQYJakhzVdtMI5BApYVXsoKaMldVfgRI6FxlnDeoAIzPUZsKhFa5t4TgLAo1ZY9_u4GIdj99aLA_7S5vqDOre1C_</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Decoding Semantic Categories from EEG Activity in Object-Based Decision Tasks</title><source>IEEE Xplore All Conference Series</source><creator>Rekrut, Maurice ; Sharma, Mansi ; Schmitt, Matthias ; Alexandersson, Jan ; Kruger, Antonio</creator><creatorcontrib>Rekrut, Maurice ; Sharma, Mansi ; Schmitt, Matthias ; Alexandersson, Jan ; Kruger, Antonio</creatorcontrib><description>This study explores the potential of decoding semantic categories from EEG-activity for the use in Silent Speech Brain-Computer Interfaces (BCI). We used object-based decision tasks to evoke conscious semantic processing for five different semantic categories in the participants cerebral cortical structures and implemented different feature extraction and classification methods to evaluate possible setups for semantic category detection in BCIs. All of the tested classification methods exceeded the chance level for training and testing on the data of the individual and even for a cross-subject condition. The best individual accuracy achieved was 84.61% for a Common Spatial Pattern (CSP) feature extraction method and Random Forrest (RF) classifier presented for the first time in a 5-class classification task illustrating the potential of this approach for possible future use in Silent Speech BCIs.</description><identifier>ISBN: 1728147069</identifier><identifier>ISBN: 9781728147062</identifier><identifier>EISSN: 2572-7672</identifier><identifier>EISBN: 9781728147079</identifier><identifier>EISBN: 1728147077</identifier><identifier>DOI: 10.1109/BCI48061.2020.9061628</identifier><language>eng</language><publisher>IEEE</publisher><subject>BCI ; Brain ; Cutoff frequency ; EEG ; Electroencephalography ; Feature extraction ; Semantic Processing ; Semantics ; Silent Speech ; Speech processing ; Task analysis</subject><ispartof>2020 8th International Winter Conference on Brain-Computer Interface (BCI), 2020, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9061628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9061628$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rekrut, Maurice</creatorcontrib><creatorcontrib>Sharma, Mansi</creatorcontrib><creatorcontrib>Schmitt, Matthias</creatorcontrib><creatorcontrib>Alexandersson, Jan</creatorcontrib><creatorcontrib>Kruger, Antonio</creatorcontrib><title>Decoding Semantic Categories from EEG Activity in Object-Based Decision Tasks</title><title>2020 8th International Winter Conference on Brain-Computer Interface (BCI)</title><addtitle>BCI</addtitle><description>This study explores the potential of decoding semantic categories from EEG-activity for the use in Silent Speech Brain-Computer Interfaces (BCI). We used object-based decision tasks to evoke conscious semantic processing for five different semantic categories in the participants cerebral cortical structures and implemented different feature extraction and classification methods to evaluate possible setups for semantic category detection in BCIs. All of the tested classification methods exceeded the chance level for training and testing on the data of the individual and even for a cross-subject condition. The best individual accuracy achieved was 84.61% for a Common Spatial Pattern (CSP) feature extraction method and Random Forrest (RF) classifier presented for the first time in a 5-class classification task illustrating the potential of this approach for possible future use in Silent Speech BCIs.</description><subject>BCI</subject><subject>Brain</subject><subject>Cutoff frequency</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Semantic Processing</subject><subject>Semantics</subject><subject>Silent Speech</subject><subject>Speech processing</subject><subject>Task analysis</subject><issn>2572-7672</issn><isbn>1728147069</isbn><isbn>9781728147062</isbn><isbn>9781728147079</isbn><isbn>1728147077</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1Kw0AUhUdFsNY8gQjzAql3ZpL5WbYx1kKlC-u63GRuy1STSCYIffsGrKtz4OM7i8PYk4CZEOCeF8Uqs6DFTIKEmRublvaKJc5YYaQVmQHjrtlE5kamRht5w-7_gXZ3LInxCABKWOcgm7D3F6o7H9oD_6AG2yHUvMCBDl0fKPJ93zW8LJd8Xg_hNwwnHlq-qY5UD-kCI3k-6iGGruVbjF_xgd3u8TtScskp-3wtt8Vbut4sV8V8nQYJakhzVdtMI5BApYVXsoKaMldVfgRI6FxlnDeoAIzPUZsKhFa5t4TgLAo1ZY9_u4GIdj99aLA_7S5vqDOre1C_</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Rekrut, Maurice</creator><creator>Sharma, Mansi</creator><creator>Schmitt, Matthias</creator><creator>Alexandersson, Jan</creator><creator>Kruger, Antonio</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202002</creationdate><title>Decoding Semantic Categories from EEG Activity in Object-Based Decision Tasks</title><author>Rekrut, Maurice ; Sharma, Mansi ; Schmitt, Matthias ; Alexandersson, Jan ; Kruger, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-53c846a0e1a361d32b0ce49bbd3c8aea99b79d7a3007d5a67b01635d8ea098a13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BCI</topic><topic>Brain</topic><topic>Cutoff frequency</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Semantic Processing</topic><topic>Semantics</topic><topic>Silent Speech</topic><topic>Speech processing</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Rekrut, Maurice</creatorcontrib><creatorcontrib>Sharma, Mansi</creatorcontrib><creatorcontrib>Schmitt, Matthias</creatorcontrib><creatorcontrib>Alexandersson, Jan</creatorcontrib><creatorcontrib>Kruger, Antonio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rekrut, Maurice</au><au>Sharma, Mansi</au><au>Schmitt, Matthias</au><au>Alexandersson, Jan</au><au>Kruger, Antonio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Decoding Semantic Categories from EEG Activity in Object-Based Decision Tasks</atitle><btitle>2020 8th International Winter Conference on Brain-Computer Interface (BCI)</btitle><stitle>BCI</stitle><date>2020-02</date><risdate>2020</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2572-7672</eissn><isbn>1728147069</isbn><isbn>9781728147062</isbn><eisbn>9781728147079</eisbn><eisbn>1728147077</eisbn><abstract>This study explores the potential of decoding semantic categories from EEG-activity for the use in Silent Speech Brain-Computer Interfaces (BCI). We used object-based decision tasks to evoke conscious semantic processing for five different semantic categories in the participants cerebral cortical structures and implemented different feature extraction and classification methods to evaluate possible setups for semantic category detection in BCIs. All of the tested classification methods exceeded the chance level for training and testing on the data of the individual and even for a cross-subject condition. The best individual accuracy achieved was 84.61% for a Common Spatial Pattern (CSP) feature extraction method and Random Forrest (RF) classifier presented for the first time in a 5-class classification task illustrating the potential of this approach for possible future use in Silent Speech BCIs.</abstract><pub>IEEE</pub><doi>10.1109/BCI48061.2020.9061628</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1728147069
ispartof 2020 8th International Winter Conference on Brain-Computer Interface (BCI), 2020, p.1-7
issn 2572-7672
language eng
recordid cdi_ieee_primary_9061628
source IEEE Xplore All Conference Series
subjects BCI
Brain
Cutoff frequency
EEG
Electroencephalography
Feature extraction
Semantic Processing
Semantics
Silent Speech
Speech processing
Task analysis
title Decoding Semantic Categories from EEG Activity in Object-Based Decision Tasks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Decoding%20Semantic%20Categories%20from%20EEG%20Activity%20in%20Object-Based%20Decision%20Tasks&rft.btitle=2020%208th%20International%20Winter%20Conference%20on%20Brain-Computer%20Interface%20(BCI)&rft.au=Rekrut,%20Maurice&rft.date=2020-02&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2572-7672&rft.isbn=1728147069&rft.isbn_list=9781728147062&rft_id=info:doi/10.1109/BCI48061.2020.9061628&rft.eisbn=9781728147079&rft.eisbn_list=1728147077&rft_dat=%3Cieee_CHZPO%3E9061628%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-53c846a0e1a361d32b0ce49bbd3c8aea99b79d7a3007d5a67b01635d8ea098a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9061628&rfr_iscdi=true