Loading…

Biometric personal identification based on handwriting

In this paper, we describe a new method to identify the writer of Chinese handwritten documents. There are many methods for signature verification or writer identification, but most of them require segmentation or connected component analysis. They are content dependent identification methods, as si...

Full description

Saved in:
Bibliographic Details
Main Authors: Yong Zhu, Tieniu Tan, Yunhong Wang
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c134t-596dba0ab0552c8e41911d6415508ad4dc9ad669680f8780ed188ed26c8118483
cites
container_end_page 800 vol.2
container_issue
container_start_page 797
container_title
container_volume 2
creator Yong Zhu
Tieniu Tan
Yunhong Wang
description In this paper, we describe a new method to identify the writer of Chinese handwritten documents. There are many methods for signature verification or writer identification, but most of them require segmentation or connected component analysis. They are content dependent identification methods, as signature verification requires the writer to write the same text (e.g. his name). In our new method, we take the handwriting as an image containing some special texture, and writer identification is regarded as texture identification. This is a content independent method. We apply the well-established 2D Gabor filtering technique to extract features of such textures and a weighted Euclidean distance classifier to fulfil the identification task. Experiments are made using Chinese handwritings from 17 different people and very promising results were achieved.
doi_str_mv 10.1109/ICPR.2000.906196
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_906196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>906196</ieee_id><sourcerecordid>906196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c134t-596dba0ab0552c8e41911d6415508ad4dc9ad669680f8780ed188ed26c8118483</originalsourceid><addsrcrecordid>eNotj1tLw0AQhRcvYKx9F5_yBxJnkt3J7KMGL4VCi-hz2exOdKVNShIQ_72BCgfO93T4jlK3CDki2PtVvX3LCwDILRBaOlNJwSVmla7MuVraiqEia6Cac6ESBIOZJoNX6nocvwEKKA0nih5jf5BpiD49yjD2ndunMUg3xTZ6N8W-Sxs3Skhn-HJd-BniFLvPG3XZuv0oy_9eqI_np_f6NVtvXlb1wzrzWOopM5ZC48A1YEzhWTRaxEAajQF2QQdvXSCyxNDybCwBmSUU5BmRNZcLdXfajSKyOw7x4Ibf3elx-Qc6ukcP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Biometric personal identification based on handwriting</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yong Zhu ; Tieniu Tan ; Yunhong Wang</creator><creatorcontrib>Yong Zhu ; Tieniu Tan ; Yunhong Wang</creatorcontrib><description>In this paper, we describe a new method to identify the writer of Chinese handwritten documents. There are many methods for signature verification or writer identification, but most of them require segmentation or connected component analysis. They are content dependent identification methods, as signature verification requires the writer to write the same text (e.g. his name). In our new method, we take the handwriting as an image containing some special texture, and writer identification is regarded as texture identification. This is a content independent method. We apply the well-established 2D Gabor filtering technique to extract features of such textures and a weighted Euclidean distance classifier to fulfil the identification task. Experiments are made using Chinese handwritings from 17 different people and very promising results were achieved.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9780769507507</identifier><identifier>ISBN: 0769507506</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2000.906196</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automation ; Biometrics ; Feature extraction ; Filtering ; Flowcharts ; Gabor filters ; Handwriting recognition ; Image segmentation ; Laboratories ; Pattern recognition</subject><ispartof>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.2, p.797-800 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c134t-596dba0ab0552c8e41911d6415508ad4dc9ad669680f8780ed188ed26c8118483</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/906196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/906196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yong Zhu</creatorcontrib><creatorcontrib>Tieniu Tan</creatorcontrib><creatorcontrib>Yunhong Wang</creatorcontrib><title>Biometric personal identification based on handwriting</title><title>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</title><addtitle>ICPR</addtitle><description>In this paper, we describe a new method to identify the writer of Chinese handwritten documents. There are many methods for signature verification or writer identification, but most of them require segmentation or connected component analysis. They are content dependent identification methods, as signature verification requires the writer to write the same text (e.g. his name). In our new method, we take the handwriting as an image containing some special texture, and writer identification is regarded as texture identification. This is a content independent method. We apply the well-established 2D Gabor filtering technique to extract features of such textures and a weighted Euclidean distance classifier to fulfil the identification task. Experiments are made using Chinese handwritings from 17 different people and very promising results were achieved.</description><subject>Automation</subject><subject>Biometrics</subject><subject>Feature extraction</subject><subject>Filtering</subject><subject>Flowcharts</subject><subject>Gabor filters</subject><subject>Handwriting recognition</subject><subject>Image segmentation</subject><subject>Laboratories</subject><subject>Pattern recognition</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9780769507507</isbn><isbn>0769507506</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1tLw0AQhRcvYKx9F5_yBxJnkt3J7KMGL4VCi-hz2exOdKVNShIQ_72BCgfO93T4jlK3CDki2PtVvX3LCwDILRBaOlNJwSVmla7MuVraiqEia6Cac6ESBIOZJoNX6nocvwEKKA0nih5jf5BpiD49yjD2ndunMUg3xTZ6N8W-Sxs3Skhn-HJd-BniFLvPG3XZuv0oy_9eqI_np_f6NVtvXlb1wzrzWOopM5ZC48A1YEzhWTRaxEAajQF2QQdvXSCyxNDybCwBmSUU5BmRNZcLdXfajSKyOw7x4Ibf3elx-Qc6ukcP</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Yong Zhu</creator><creator>Tieniu Tan</creator><creator>Yunhong Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Biometric personal identification based on handwriting</title><author>Yong Zhu ; Tieniu Tan ; Yunhong Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c134t-596dba0ab0552c8e41911d6415508ad4dc9ad669680f8780ed188ed26c8118483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Automation</topic><topic>Biometrics</topic><topic>Feature extraction</topic><topic>Filtering</topic><topic>Flowcharts</topic><topic>Gabor filters</topic><topic>Handwriting recognition</topic><topic>Image segmentation</topic><topic>Laboratories</topic><topic>Pattern recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Yong Zhu</creatorcontrib><creatorcontrib>Tieniu Tan</creatorcontrib><creatorcontrib>Yunhong Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yong Zhu</au><au>Tieniu Tan</au><au>Yunhong Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Biometric personal identification based on handwriting</atitle><btitle>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</btitle><stitle>ICPR</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>797</spage><epage>800 vol.2</epage><pages>797-800 vol.2</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9780769507507</isbn><isbn>0769507506</isbn><abstract>In this paper, we describe a new method to identify the writer of Chinese handwritten documents. There are many methods for signature verification or writer identification, but most of them require segmentation or connected component analysis. They are content dependent identification methods, as signature verification requires the writer to write the same text (e.g. his name). In our new method, we take the handwriting as an image containing some special texture, and writer identification is regarded as texture identification. This is a content independent method. We apply the well-established 2D Gabor filtering technique to extract features of such textures and a weighted Euclidean distance classifier to fulfil the identification task. Experiments are made using Chinese handwritings from 17 different people and very promising results were achieved.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2000.906196</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.2, p.797-800 vol.2
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_906196
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automation
Biometrics
Feature extraction
Filtering
Flowcharts
Gabor filters
Handwriting recognition
Image segmentation
Laboratories
Pattern recognition
title Biometric personal identification based on handwriting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Biometric%20personal%20identification%20based%20on%20handwriting&rft.btitle=Proceedings%2015th%20International%20Conference%20on%20Pattern%20Recognition.%20ICPR-2000&rft.au=Yong%20Zhu&rft.date=2000&rft.volume=2&rft.spage=797&rft.epage=800%20vol.2&rft.pages=797-800%20vol.2&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9780769507507&rft.isbn_list=0769507506&rft_id=info:doi/10.1109/ICPR.2000.906196&rft_dat=%3Cieee_6IE%3E906196%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c134t-596dba0ab0552c8e41911d6415508ad4dc9ad669680f8780ed188ed26c8118483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=906196&rfr_iscdi=true