Loading…

Evolutionary-Based Ensemble Under-Sampling for Imbalanced Data

Class imbalance is a prevalent problem in the real world, which mainly refers to the uneven distribution of samples of each class, and it will lead to a serious decline in the learning performance. The classification results will seriously bias to the majority class and ignore the minority class. Ho...

Full description

Saved in:
Bibliographic Details
Main Authors: ZHANG, YONGQING, LU, RONGZHAO, HUANG, JI, GAO, DONGRUI
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 216
container_issue
container_start_page 212
container_title
container_volume
creator ZHANG, YONGQING
LU, RONGZHAO
HUANG, JI
GAO, DONGRUI
description Class imbalance is a prevalent problem in the real world, which mainly refers to the uneven distribution of samples of each class, and it will lead to a serious decline in the learning performance. The classification results will seriously bias to the majority class and ignore the minority class. However, the accuracy of the minority class is usually the focus of attention. Therefore, in this paper, an evolutionary-based ensemble under-sampling (EEU) algorithm is proposed to solve this problem. Specifically, evolutionary algorithm is used to under sample the data and multiple base classifiers are trained by ensemble learning. The advantage of this algorithm lies in that it can improve the accuracy of minority class. Comparison experiments are performed on five UCI datasets, and the results demonstrate that EEU outperforms other sampling methods.
doi_str_mv 10.1109/ICCWAMTIP47768.2019.9067647
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9067647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9067647</ieee_id><sourcerecordid>9067647</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-cdb8b01c61b0242cd7081bde67b37e5602b803ba8923cdc3a10e5e96698a79c83</originalsourceid><addsrcrecordid>eNo1j01Lw0AYhFdFsNb8Ai8BzxvfdzfZj4tQ06iBioItHsvu5q1E8lGSKvjvDVhPc5hh5hnGbhASRLC3ZZ6_L57X5WuqtTKJALSJBaVVqk_YJWphMBWpkKdsJjKtuLEqPWOR1ebfQ3PBonH8BAApQGYoZuyu-O6br0Pdd2744fdupCouupFa31C86Soa-Jtr903dfcS7fojL1rvGdWGKLd3BXbHznWtGio46Z5uHYp0_8dXLY5kvVryehg48VN54wKDQw8QYKg0GfUVKe6kpUyC8AemdsUKGKkiHQBlZpaxx2gYj5-z6r7cmou1-qNsJd3u8L38B2B1NoA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evolutionary-Based Ensemble Under-Sampling for Imbalanced Data</title><source>IEEE Xplore All Conference Series</source><creator>ZHANG, YONGQING ; LU, RONGZHAO ; HUANG, JI ; GAO, DONGRUI</creator><creatorcontrib>ZHANG, YONGQING ; LU, RONGZHAO ; HUANG, JI ; GAO, DONGRUI</creatorcontrib><description>Class imbalance is a prevalent problem in the real world, which mainly refers to the uneven distribution of samples of each class, and it will lead to a serious decline in the learning performance. The classification results will seriously bias to the majority class and ignore the minority class. However, the accuracy of the minority class is usually the focus of attention. Therefore, in this paper, an evolutionary-based ensemble under-sampling (EEU) algorithm is proposed to solve this problem. Specifically, evolutionary algorithm is used to under sample the data and multiple base classifiers are trained by ensemble learning. The advantage of this algorithm lies in that it can improve the accuracy of minority class. Comparison experiments are performed on five UCI datasets, and the results demonstrate that EEU outperforms other sampling methods.</description><identifier>ISBN: 9781728142418</identifier><identifier>ISBN: 1728142415</identifier><identifier>EISSN: 2576-8964</identifier><identifier>EISBN: 1728142423</identifier><identifier>EISBN: 1728142407</identifier><identifier>EISBN: 9781728142425</identifier><identifier>EISBN: 9781728142401</identifier><identifier>DOI: 10.1109/ICCWAMTIP47768.2019.9067647</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Ensemble learning ; Evolutionary algorithms ; Evolutionary computation ; Forestry ; Imbalanced data ; Information technology ; Machine learning ; Machine learning algorithms ; Sampling method ; Sampling methods</subject><ispartof>2019 16th International Computer Conference on Wavelet Active Media Technology and Information Processing, 2019, p.212-216</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9067647$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9067647$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>ZHANG, YONGQING</creatorcontrib><creatorcontrib>LU, RONGZHAO</creatorcontrib><creatorcontrib>HUANG, JI</creatorcontrib><creatorcontrib>GAO, DONGRUI</creatorcontrib><title>Evolutionary-Based Ensemble Under-Sampling for Imbalanced Data</title><title>2019 16th International Computer Conference on Wavelet Active Media Technology and Information Processing</title><addtitle>ICCWAMTIP</addtitle><description>Class imbalance is a prevalent problem in the real world, which mainly refers to the uneven distribution of samples of each class, and it will lead to a serious decline in the learning performance. The classification results will seriously bias to the majority class and ignore the minority class. However, the accuracy of the minority class is usually the focus of attention. Therefore, in this paper, an evolutionary-based ensemble under-sampling (EEU) algorithm is proposed to solve this problem. Specifically, evolutionary algorithm is used to under sample the data and multiple base classifiers are trained by ensemble learning. The advantage of this algorithm lies in that it can improve the accuracy of minority class. Comparison experiments are performed on five UCI datasets, and the results demonstrate that EEU outperforms other sampling methods.</description><subject>Classification algorithms</subject><subject>Ensemble learning</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Forestry</subject><subject>Imbalanced data</subject><subject>Information technology</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Sampling method</subject><subject>Sampling methods</subject><issn>2576-8964</issn><isbn>9781728142418</isbn><isbn>1728142415</isbn><isbn>1728142423</isbn><isbn>1728142407</isbn><isbn>9781728142425</isbn><isbn>9781728142401</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j01Lw0AYhFdFsNb8Ai8BzxvfdzfZj4tQ06iBioItHsvu5q1E8lGSKvjvDVhPc5hh5hnGbhASRLC3ZZ6_L57X5WuqtTKJALSJBaVVqk_YJWphMBWpkKdsJjKtuLEqPWOR1ebfQ3PBonH8BAApQGYoZuyu-O6br0Pdd2744fdupCouupFa31C86Soa-Jtr903dfcS7fojL1rvGdWGKLd3BXbHznWtGio46Z5uHYp0_8dXLY5kvVryehg48VN54wKDQw8QYKg0GfUVKe6kpUyC8AemdsUKGKkiHQBlZpaxx2gYj5-z6r7cmou1-qNsJd3u8L38B2B1NoA</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>ZHANG, YONGQING</creator><creator>LU, RONGZHAO</creator><creator>HUANG, JI</creator><creator>GAO, DONGRUI</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201912</creationdate><title>Evolutionary-Based Ensemble Under-Sampling for Imbalanced Data</title><author>ZHANG, YONGQING ; LU, RONGZHAO ; HUANG, JI ; GAO, DONGRUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-cdb8b01c61b0242cd7081bde67b37e5602b803ba8923cdc3a10e5e96698a79c83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification algorithms</topic><topic>Ensemble learning</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Forestry</topic><topic>Imbalanced data</topic><topic>Information technology</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Sampling method</topic><topic>Sampling methods</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, YONGQING</creatorcontrib><creatorcontrib>LU, RONGZHAO</creatorcontrib><creatorcontrib>HUANG, JI</creatorcontrib><creatorcontrib>GAO, DONGRUI</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG, YONGQING</au><au>LU, RONGZHAO</au><au>HUANG, JI</au><au>GAO, DONGRUI</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolutionary-Based Ensemble Under-Sampling for Imbalanced Data</atitle><btitle>2019 16th International Computer Conference on Wavelet Active Media Technology and Information Processing</btitle><stitle>ICCWAMTIP</stitle><date>2019-12</date><risdate>2019</risdate><spage>212</spage><epage>216</epage><pages>212-216</pages><eissn>2576-8964</eissn><isbn>9781728142418</isbn><isbn>1728142415</isbn><eisbn>1728142423</eisbn><eisbn>1728142407</eisbn><eisbn>9781728142425</eisbn><eisbn>9781728142401</eisbn><abstract>Class imbalance is a prevalent problem in the real world, which mainly refers to the uneven distribution of samples of each class, and it will lead to a serious decline in the learning performance. The classification results will seriously bias to the majority class and ignore the minority class. However, the accuracy of the minority class is usually the focus of attention. Therefore, in this paper, an evolutionary-based ensemble under-sampling (EEU) algorithm is proposed to solve this problem. Specifically, evolutionary algorithm is used to under sample the data and multiple base classifiers are trained by ensemble learning. The advantage of this algorithm lies in that it can improve the accuracy of minority class. Comparison experiments are performed on five UCI datasets, and the results demonstrate that EEU outperforms other sampling methods.</abstract><pub>IEEE</pub><doi>10.1109/ICCWAMTIP47768.2019.9067647</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781728142418
ispartof 2019 16th International Computer Conference on Wavelet Active Media Technology and Information Processing, 2019, p.212-216
issn 2576-8964
language eng
recordid cdi_ieee_primary_9067647
source IEEE Xplore All Conference Series
subjects Classification algorithms
Ensemble learning
Evolutionary algorithms
Evolutionary computation
Forestry
Imbalanced data
Information technology
Machine learning
Machine learning algorithms
Sampling method
Sampling methods
title Evolutionary-Based Ensemble Under-Sampling for Imbalanced Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolutionary-Based%20Ensemble%20Under-Sampling%20for%20Imbalanced%20Data&rft.btitle=2019%2016th%20International%20Computer%20Conference%20on%20Wavelet%20Active%20Media%20Technology%20and%20Information%20Processing&rft.au=ZHANG,%20YONGQING&rft.date=2019-12&rft.spage=212&rft.epage=216&rft.pages=212-216&rft.eissn=2576-8964&rft.isbn=9781728142418&rft.isbn_list=1728142415&rft_id=info:doi/10.1109/ICCWAMTIP47768.2019.9067647&rft.eisbn=1728142423&rft.eisbn_list=1728142407&rft.eisbn_list=9781728142425&rft.eisbn_list=9781728142401&rft_dat=%3Cieee_CHZPO%3E9067647%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-cdb8b01c61b0242cd7081bde67b37e5602b803ba8923cdc3a10e5e96698a79c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9067647&rfr_iscdi=true