Loading…

Adding Noise Trajectory for Providing Privacy in Data Publishing by Vectorization

Since trajectory data is widely collected and utilized for scientific research and business purpose, publishing trajectory without proper privacy-policy leads to an acute threat to individual data. Recently, several methods, i.e., k-anonymity, l-diversity, t-closeness have been studied, though they...

Full description

Saved in:
Bibliographic Details
Main Authors: Tojiboev, Rashid, Lee, Wookey, Lee, Charles Cheolgi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 434
container_issue
container_start_page 432
container_title
container_volume
creator Tojiboev, Rashid
Lee, Wookey
Lee, Charles Cheolgi
description Since trajectory data is widely collected and utilized for scientific research and business purpose, publishing trajectory without proper privacy-policy leads to an acute threat to individual data. Recently, several methods, i.e., k-anonymity, l-diversity, t-closeness have been studied, though they tend to protect by reducing data depends on a feature of each method. When a strong privacy protection is required, these methods have excessively reduced data utility that may affect the result of scientific research. In this research, we suggest a novel approach to tackle this existing dilemma via an adding noise trajectory on a vector-based grid environment.
doi_str_mv 10.1109/BigComp48618.2020.00-34
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9070564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9070564</ieee_id><sourcerecordid>9070564</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-6f8231266941561f10992ff7a4bcdf74e095cf4a58badee3438da635007adff23</originalsourceid><addsrcrecordid>eNotj81KAzEYRaMgWGufwIV5galf_pNlHa0KRUeobktmktSUdlIyY2F8erW6OovDuXARuiYwJQTMzW1cl2m351oSPaVAYQpQMH6CLoiimkhgHE7RiDIlCsOEPEeTrtsAADHSUAUj9DpzLrZr_Jxi5_Ey241v-pQHHFLGVU6HeNRVjgfbDDi2-M72Flef9TZ2H7-qHvD7sYlfto-pvURnwW47P_nnGL3N75flY7F4eXgqZ4siUmB9IYOmjFApDSdCkvBzx9AQlOV144LiHoxoArdC19Z5zzjTzkomAJR1IVA2Rld_u9F7v9rnuLN5WBlQICRn399cUbo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adding Noise Trajectory for Providing Privacy in Data Publishing by Vectorization</title><source>IEEE Xplore All Conference Series</source><creator>Tojiboev, Rashid ; Lee, Wookey ; Lee, Charles Cheolgi</creator><creatorcontrib>Tojiboev, Rashid ; Lee, Wookey ; Lee, Charles Cheolgi</creatorcontrib><description>Since trajectory data is widely collected and utilized for scientific research and business purpose, publishing trajectory without proper privacy-policy leads to an acute threat to individual data. Recently, several methods, i.e., k-anonymity, l-diversity, t-closeness have been studied, though they tend to protect by reducing data depends on a feature of each method. When a strong privacy protection is required, these methods have excessively reduced data utility that may affect the result of scientific research. In this research, we suggest a novel approach to tackle this existing dilemma via an adding noise trajectory on a vector-based grid environment.</description><identifier>EISSN: 2375-9356</identifier><identifier>EISBN: 1728160340</identifier><identifier>EISBN: 9781728160344</identifier><identifier>DOI: 10.1109/BigComp48618.2020.00-34</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cancer ; Data privacy ; Noise trajectory ; Privacy ; Privacy Publishing Data ; Publishing ; Surrogate Vector ; Trajectory</subject><ispartof>2020 IEEE International Conference on Big Data and Smart Computing (BigComp), 2020, p.432-434</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9070564$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9070564$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tojiboev, Rashid</creatorcontrib><creatorcontrib>Lee, Wookey</creatorcontrib><creatorcontrib>Lee, Charles Cheolgi</creatorcontrib><title>Adding Noise Trajectory for Providing Privacy in Data Publishing by Vectorization</title><title>2020 IEEE International Conference on Big Data and Smart Computing (BigComp)</title><addtitle>BIGCOMP</addtitle><description>Since trajectory data is widely collected and utilized for scientific research and business purpose, publishing trajectory without proper privacy-policy leads to an acute threat to individual data. Recently, several methods, i.e., k-anonymity, l-diversity, t-closeness have been studied, though they tend to protect by reducing data depends on a feature of each method. When a strong privacy protection is required, these methods have excessively reduced data utility that may affect the result of scientific research. In this research, we suggest a novel approach to tackle this existing dilemma via an adding noise trajectory on a vector-based grid environment.</description><subject>Cancer</subject><subject>Data privacy</subject><subject>Noise trajectory</subject><subject>Privacy</subject><subject>Privacy Publishing Data</subject><subject>Publishing</subject><subject>Surrogate Vector</subject><subject>Trajectory</subject><issn>2375-9356</issn><isbn>1728160340</isbn><isbn>9781728160344</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEYRaMgWGufwIV5galf_pNlHa0KRUeobktmktSUdlIyY2F8erW6OovDuXARuiYwJQTMzW1cl2m351oSPaVAYQpQMH6CLoiimkhgHE7RiDIlCsOEPEeTrtsAADHSUAUj9DpzLrZr_Jxi5_Ey241v-pQHHFLGVU6HeNRVjgfbDDi2-M72Flef9TZ2H7-qHvD7sYlfto-pvURnwW47P_nnGL3N75flY7F4eXgqZ4siUmB9IYOmjFApDSdCkvBzx9AQlOV144LiHoxoArdC19Z5zzjTzkomAJR1IVA2Rld_u9F7v9rnuLN5WBlQICRn399cUbo</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Tojiboev, Rashid</creator><creator>Lee, Wookey</creator><creator>Lee, Charles Cheolgi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202002</creationdate><title>Adding Noise Trajectory for Providing Privacy in Data Publishing by Vectorization</title><author>Tojiboev, Rashid ; Lee, Wookey ; Lee, Charles Cheolgi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-6f8231266941561f10992ff7a4bcdf74e095cf4a58badee3438da635007adff23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cancer</topic><topic>Data privacy</topic><topic>Noise trajectory</topic><topic>Privacy</topic><topic>Privacy Publishing Data</topic><topic>Publishing</topic><topic>Surrogate Vector</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Tojiboev, Rashid</creatorcontrib><creatorcontrib>Lee, Wookey</creatorcontrib><creatorcontrib>Lee, Charles Cheolgi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tojiboev, Rashid</au><au>Lee, Wookey</au><au>Lee, Charles Cheolgi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adding Noise Trajectory for Providing Privacy in Data Publishing by Vectorization</atitle><btitle>2020 IEEE International Conference on Big Data and Smart Computing (BigComp)</btitle><stitle>BIGCOMP</stitle><date>2020-02</date><risdate>2020</risdate><spage>432</spage><epage>434</epage><pages>432-434</pages><eissn>2375-9356</eissn><eisbn>1728160340</eisbn><eisbn>9781728160344</eisbn><abstract>Since trajectory data is widely collected and utilized for scientific research and business purpose, publishing trajectory without proper privacy-policy leads to an acute threat to individual data. Recently, several methods, i.e., k-anonymity, l-diversity, t-closeness have been studied, though they tend to protect by reducing data depends on a feature of each method. When a strong privacy protection is required, these methods have excessively reduced data utility that may affect the result of scientific research. In this research, we suggest a novel approach to tackle this existing dilemma via an adding noise trajectory on a vector-based grid environment.</abstract><pub>IEEE</pub><doi>10.1109/BigComp48618.2020.00-34</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2375-9356
ispartof 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), 2020, p.432-434
issn 2375-9356
language eng
recordid cdi_ieee_primary_9070564
source IEEE Xplore All Conference Series
subjects Cancer
Data privacy
Noise trajectory
Privacy
Privacy Publishing Data
Publishing
Surrogate Vector
Trajectory
title Adding Noise Trajectory for Providing Privacy in Data Publishing by Vectorization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adding%20Noise%20Trajectory%20for%20Providing%20Privacy%20in%20Data%20Publishing%20by%20Vectorization&rft.btitle=2020%20IEEE%20International%20Conference%20on%20Big%20Data%20and%20Smart%20Computing%20(BigComp)&rft.au=Tojiboev,%20Rashid&rft.date=2020-02&rft.spage=432&rft.epage=434&rft.pages=432-434&rft.eissn=2375-9356&rft_id=info:doi/10.1109/BigComp48618.2020.00-34&rft.eisbn=1728160340&rft.eisbn_list=9781728160344&rft_dat=%3Cieee_CHZPO%3E9070564%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-6f8231266941561f10992ff7a4bcdf74e095cf4a58badee3438da635007adff23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9070564&rfr_iscdi=true