Loading…
Adding Noise Trajectory for Providing Privacy in Data Publishing by Vectorization
Since trajectory data is widely collected and utilized for scientific research and business purpose, publishing trajectory without proper privacy-policy leads to an acute threat to individual data. Recently, several methods, i.e., k-anonymity, l-diversity, t-closeness have been studied, though they...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 434 |
container_issue | |
container_start_page | 432 |
container_title | |
container_volume | |
creator | Tojiboev, Rashid Lee, Wookey Lee, Charles Cheolgi |
description | Since trajectory data is widely collected and utilized for scientific research and business purpose, publishing trajectory without proper privacy-policy leads to an acute threat to individual data. Recently, several methods, i.e., k-anonymity, l-diversity, t-closeness have been studied, though they tend to protect by reducing data depends on a feature of each method. When a strong privacy protection is required, these methods have excessively reduced data utility that may affect the result of scientific research. In this research, we suggest a novel approach to tackle this existing dilemma via an adding noise trajectory on a vector-based grid environment. |
doi_str_mv | 10.1109/BigComp48618.2020.00-34 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9070564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9070564</ieee_id><sourcerecordid>9070564</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-6f8231266941561f10992ff7a4bcdf74e095cf4a58badee3438da635007adff23</originalsourceid><addsrcrecordid>eNotj81KAzEYRaMgWGufwIV5galf_pNlHa0KRUeobktmktSUdlIyY2F8erW6OovDuXARuiYwJQTMzW1cl2m351oSPaVAYQpQMH6CLoiimkhgHE7RiDIlCsOEPEeTrtsAADHSUAUj9DpzLrZr_Jxi5_Ey241v-pQHHFLGVU6HeNRVjgfbDDi2-M72Flef9TZ2H7-qHvD7sYlfto-pvURnwW47P_nnGL3N75flY7F4eXgqZ4siUmB9IYOmjFApDSdCkvBzx9AQlOV144LiHoxoArdC19Z5zzjTzkomAJR1IVA2Rld_u9F7v9rnuLN5WBlQICRn399cUbo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adding Noise Trajectory for Providing Privacy in Data Publishing by Vectorization</title><source>IEEE Xplore All Conference Series</source><creator>Tojiboev, Rashid ; Lee, Wookey ; Lee, Charles Cheolgi</creator><creatorcontrib>Tojiboev, Rashid ; Lee, Wookey ; Lee, Charles Cheolgi</creatorcontrib><description>Since trajectory data is widely collected and utilized for scientific research and business purpose, publishing trajectory without proper privacy-policy leads to an acute threat to individual data. Recently, several methods, i.e., k-anonymity, l-diversity, t-closeness have been studied, though they tend to protect by reducing data depends on a feature of each method. When a strong privacy protection is required, these methods have excessively reduced data utility that may affect the result of scientific research. In this research, we suggest a novel approach to tackle this existing dilemma via an adding noise trajectory on a vector-based grid environment.</description><identifier>EISSN: 2375-9356</identifier><identifier>EISBN: 1728160340</identifier><identifier>EISBN: 9781728160344</identifier><identifier>DOI: 10.1109/BigComp48618.2020.00-34</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cancer ; Data privacy ; Noise trajectory ; Privacy ; Privacy Publishing Data ; Publishing ; Surrogate Vector ; Trajectory</subject><ispartof>2020 IEEE International Conference on Big Data and Smart Computing (BigComp), 2020, p.432-434</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9070564$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9070564$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tojiboev, Rashid</creatorcontrib><creatorcontrib>Lee, Wookey</creatorcontrib><creatorcontrib>Lee, Charles Cheolgi</creatorcontrib><title>Adding Noise Trajectory for Providing Privacy in Data Publishing by Vectorization</title><title>2020 IEEE International Conference on Big Data and Smart Computing (BigComp)</title><addtitle>BIGCOMP</addtitle><description>Since trajectory data is widely collected and utilized for scientific research and business purpose, publishing trajectory without proper privacy-policy leads to an acute threat to individual data. Recently, several methods, i.e., k-anonymity, l-diversity, t-closeness have been studied, though they tend to protect by reducing data depends on a feature of each method. When a strong privacy protection is required, these methods have excessively reduced data utility that may affect the result of scientific research. In this research, we suggest a novel approach to tackle this existing dilemma via an adding noise trajectory on a vector-based grid environment.</description><subject>Cancer</subject><subject>Data privacy</subject><subject>Noise trajectory</subject><subject>Privacy</subject><subject>Privacy Publishing Data</subject><subject>Publishing</subject><subject>Surrogate Vector</subject><subject>Trajectory</subject><issn>2375-9356</issn><isbn>1728160340</isbn><isbn>9781728160344</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEYRaMgWGufwIV5galf_pNlHa0KRUeobktmktSUdlIyY2F8erW6OovDuXARuiYwJQTMzW1cl2m351oSPaVAYQpQMH6CLoiimkhgHE7RiDIlCsOEPEeTrtsAADHSUAUj9DpzLrZr_Jxi5_Ey241v-pQHHFLGVU6HeNRVjgfbDDi2-M72Flef9TZ2H7-qHvD7sYlfto-pvURnwW47P_nnGL3N75flY7F4eXgqZ4siUmB9IYOmjFApDSdCkvBzx9AQlOV144LiHoxoArdC19Z5zzjTzkomAJR1IVA2Rld_u9F7v9rnuLN5WBlQICRn399cUbo</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Tojiboev, Rashid</creator><creator>Lee, Wookey</creator><creator>Lee, Charles Cheolgi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202002</creationdate><title>Adding Noise Trajectory for Providing Privacy in Data Publishing by Vectorization</title><author>Tojiboev, Rashid ; Lee, Wookey ; Lee, Charles Cheolgi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-6f8231266941561f10992ff7a4bcdf74e095cf4a58badee3438da635007adff23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cancer</topic><topic>Data privacy</topic><topic>Noise trajectory</topic><topic>Privacy</topic><topic>Privacy Publishing Data</topic><topic>Publishing</topic><topic>Surrogate Vector</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Tojiboev, Rashid</creatorcontrib><creatorcontrib>Lee, Wookey</creatorcontrib><creatorcontrib>Lee, Charles Cheolgi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tojiboev, Rashid</au><au>Lee, Wookey</au><au>Lee, Charles Cheolgi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adding Noise Trajectory for Providing Privacy in Data Publishing by Vectorization</atitle><btitle>2020 IEEE International Conference on Big Data and Smart Computing (BigComp)</btitle><stitle>BIGCOMP</stitle><date>2020-02</date><risdate>2020</risdate><spage>432</spage><epage>434</epage><pages>432-434</pages><eissn>2375-9356</eissn><eisbn>1728160340</eisbn><eisbn>9781728160344</eisbn><abstract>Since trajectory data is widely collected and utilized for scientific research and business purpose, publishing trajectory without proper privacy-policy leads to an acute threat to individual data. Recently, several methods, i.e., k-anonymity, l-diversity, t-closeness have been studied, though they tend to protect by reducing data depends on a feature of each method. When a strong privacy protection is required, these methods have excessively reduced data utility that may affect the result of scientific research. In this research, we suggest a novel approach to tackle this existing dilemma via an adding noise trajectory on a vector-based grid environment.</abstract><pub>IEEE</pub><doi>10.1109/BigComp48618.2020.00-34</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2375-9356 |
ispartof | 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), 2020, p.432-434 |
issn | 2375-9356 |
language | eng |
recordid | cdi_ieee_primary_9070564 |
source | IEEE Xplore All Conference Series |
subjects | Cancer Data privacy Noise trajectory Privacy Privacy Publishing Data Publishing Surrogate Vector Trajectory |
title | Adding Noise Trajectory for Providing Privacy in Data Publishing by Vectorization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adding%20Noise%20Trajectory%20for%20Providing%20Privacy%20in%20Data%20Publishing%20by%20Vectorization&rft.btitle=2020%20IEEE%20International%20Conference%20on%20Big%20Data%20and%20Smart%20Computing%20(BigComp)&rft.au=Tojiboev,%20Rashid&rft.date=2020-02&rft.spage=432&rft.epage=434&rft.pages=432-434&rft.eissn=2375-9356&rft_id=info:doi/10.1109/BigComp48618.2020.00-34&rft.eisbn=1728160340&rft.eisbn_list=9781728160344&rft_dat=%3Cieee_CHZPO%3E9070564%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-6f8231266941561f10992ff7a4bcdf74e095cf4a58badee3438da635007adff23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9070564&rfr_iscdi=true |