Loading…

Impact of On-Chip Interconnection in a Large-Scale Memristor Crossbar Array for Neural Network Accelerator and Neuromorphic Chip

A crossbar array that combines computation and storage functions in non-volatile resistive memory is a promising artificial intelligence (AI) computing architecture. It is because it can largely save a significant energy from interconnection between a processor and a memory. However, the parasitic c...

Full description

Saved in:
Bibliographic Details
Main Authors: Shin, Taein, Son, Kyungjune, Kim, Seongguk, Cho, Kyungjun, Park, Shinyoung, Kim, Subin, Park, Gapyeol, Sim, Boogyo, Kim, Joungho
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3
container_issue
container_start_page 1
container_title
container_volume
creator Shin, Taein
Son, Kyungjune
Kim, Seongguk
Cho, Kyungjun
Park, Shinyoung
Kim, Subin
Park, Gapyeol
Sim, Boogyo
Kim, Joungho
description A crossbar array that combines computation and storage functions in non-volatile resistive memory is a promising artificial intelligence (AI) computing architecture. It is because it can largely save a significant energy from interconnection between a processor and a memory. However, the parasitic components from its dense interconnection can affect the electrical performance of noise-sensitive analog-computing and small read voltage margin of the memristor. In this paper, we designed a large-scale memristor crossbar array, and modeled it into equivalent circuit models and analyzed its signal integrity considering IR drop, crosstalk and ripple. These factors were compared depending on the physical dimension of on-chip interconnection and operating frequency. Based on the eye-diagram simulation, we could successfully demonstrate the voltage margin and timing margin for memristor operations.
doi_str_mv 10.1109/EPEPS47316.2019.193227
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9073136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9073136</ieee_id><sourcerecordid>9073136</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-ffdcb0cf85d54ac028ce7068a92459f5e9869a55b6fa7b533620b209e142e9ab3</originalsourceid><addsrcrecordid>eNotkN9KwzAYxaMgOOaeQJC8QGf-NGlyOcrUwXSD6fX4mn1x0bYpaUV2t0d3U69-cM7hHDiE3HE25ZzZ-_l6vt7kheR6Khi3U26lEMUFmdjC8EIYniuj5CUZCa5VlnOursmk7z8YY5IbY6wekeOi6cANNHq6arNyHzq6aAdMLrYtuiHEloaWAl1Cesds46BG-oxNCv0QEy1T7PsKEp2lBAfqT9ILfiWoTxi-Y_qkM-ewxgTnNLS7Xzs2MXX74Oh57oZceah7nPxzTN4e5q_lU7ZcPS7K2TILgskh837nKua8UTuVg2PCOCyYNmBFrqxXaI22oFSlPRSVklILVglmkecCLVRyTG7_egMibrsUGkiHrWWn-6SWP1gsYnI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Impact of On-Chip Interconnection in a Large-Scale Memristor Crossbar Array for Neural Network Accelerator and Neuromorphic Chip</title><source>IEEE Xplore All Conference Series</source><creator>Shin, Taein ; Son, Kyungjune ; Kim, Seongguk ; Cho, Kyungjun ; Park, Shinyoung ; Kim, Subin ; Park, Gapyeol ; Sim, Boogyo ; Kim, Joungho</creator><creatorcontrib>Shin, Taein ; Son, Kyungjune ; Kim, Seongguk ; Cho, Kyungjun ; Park, Shinyoung ; Kim, Subin ; Park, Gapyeol ; Sim, Boogyo ; Kim, Joungho</creatorcontrib><description>A crossbar array that combines computation and storage functions in non-volatile resistive memory is a promising artificial intelligence (AI) computing architecture. It is because it can largely save a significant energy from interconnection between a processor and a memory. However, the parasitic components from its dense interconnection can affect the electrical performance of noise-sensitive analog-computing and small read voltage margin of the memristor. In this paper, we designed a large-scale memristor crossbar array, and modeled it into equivalent circuit models and analyzed its signal integrity considering IR drop, crosstalk and ripple. These factors were compared depending on the physical dimension of on-chip interconnection and operating frequency. Based on the eye-diagram simulation, we could successfully demonstrate the voltage margin and timing margin for memristor operations.</description><identifier>EISSN: 2165-4115</identifier><identifier>EISBN: 9781728145853</identifier><identifier>EISBN: 1728145856</identifier><identifier>DOI: 10.1109/EPEPS47316.2019.193227</identifier><language>eng</language><publisher>IEEE</publisher><subject>Eye-diagram ; Memristor crossbar array ; On-chip interconnection ; Signal integrity</subject><ispartof>2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2019, p.1-3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9073136$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9073136$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shin, Taein</creatorcontrib><creatorcontrib>Son, Kyungjune</creatorcontrib><creatorcontrib>Kim, Seongguk</creatorcontrib><creatorcontrib>Cho, Kyungjun</creatorcontrib><creatorcontrib>Park, Shinyoung</creatorcontrib><creatorcontrib>Kim, Subin</creatorcontrib><creatorcontrib>Park, Gapyeol</creatorcontrib><creatorcontrib>Sim, Boogyo</creatorcontrib><creatorcontrib>Kim, Joungho</creatorcontrib><title>Impact of On-Chip Interconnection in a Large-Scale Memristor Crossbar Array for Neural Network Accelerator and Neuromorphic Chip</title><title>2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)</title><addtitle>EPEPS</addtitle><description>A crossbar array that combines computation and storage functions in non-volatile resistive memory is a promising artificial intelligence (AI) computing architecture. It is because it can largely save a significant energy from interconnection between a processor and a memory. However, the parasitic components from its dense interconnection can affect the electrical performance of noise-sensitive analog-computing and small read voltage margin of the memristor. In this paper, we designed a large-scale memristor crossbar array, and modeled it into equivalent circuit models and analyzed its signal integrity considering IR drop, crosstalk and ripple. These factors were compared depending on the physical dimension of on-chip interconnection and operating frequency. Based on the eye-diagram simulation, we could successfully demonstrate the voltage margin and timing margin for memristor operations.</description><subject>Eye-diagram</subject><subject>Memristor crossbar array</subject><subject>On-chip interconnection</subject><subject>Signal integrity</subject><issn>2165-4115</issn><isbn>9781728145853</isbn><isbn>1728145856</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN9KwzAYxaMgOOaeQJC8QGf-NGlyOcrUwXSD6fX4mn1x0bYpaUV2t0d3U69-cM7hHDiE3HE25ZzZ-_l6vt7kheR6Khi3U26lEMUFmdjC8EIYniuj5CUZCa5VlnOursmk7z8YY5IbY6wekeOi6cANNHq6arNyHzq6aAdMLrYtuiHEloaWAl1Cesds46BG-oxNCv0QEy1T7PsKEp2lBAfqT9ILfiWoTxi-Y_qkM-ewxgTnNLS7Xzs2MXX74Oh57oZceah7nPxzTN4e5q_lU7ZcPS7K2TILgskh837nKua8UTuVg2PCOCyYNmBFrqxXaI22oFSlPRSVklILVglmkecCLVRyTG7_egMibrsUGkiHrWWn-6SWP1gsYnI</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Shin, Taein</creator><creator>Son, Kyungjune</creator><creator>Kim, Seongguk</creator><creator>Cho, Kyungjun</creator><creator>Park, Shinyoung</creator><creator>Kim, Subin</creator><creator>Park, Gapyeol</creator><creator>Sim, Boogyo</creator><creator>Kim, Joungho</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201910</creationdate><title>Impact of On-Chip Interconnection in a Large-Scale Memristor Crossbar Array for Neural Network Accelerator and Neuromorphic Chip</title><author>Shin, Taein ; Son, Kyungjune ; Kim, Seongguk ; Cho, Kyungjun ; Park, Shinyoung ; Kim, Subin ; Park, Gapyeol ; Sim, Boogyo ; Kim, Joungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-ffdcb0cf85d54ac028ce7068a92459f5e9869a55b6fa7b533620b209e142e9ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Eye-diagram</topic><topic>Memristor crossbar array</topic><topic>On-chip interconnection</topic><topic>Signal integrity</topic><toplevel>online_resources</toplevel><creatorcontrib>Shin, Taein</creatorcontrib><creatorcontrib>Son, Kyungjune</creatorcontrib><creatorcontrib>Kim, Seongguk</creatorcontrib><creatorcontrib>Cho, Kyungjun</creatorcontrib><creatorcontrib>Park, Shinyoung</creatorcontrib><creatorcontrib>Kim, Subin</creatorcontrib><creatorcontrib>Park, Gapyeol</creatorcontrib><creatorcontrib>Sim, Boogyo</creatorcontrib><creatorcontrib>Kim, Joungho</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shin, Taein</au><au>Son, Kyungjune</au><au>Kim, Seongguk</au><au>Cho, Kyungjun</au><au>Park, Shinyoung</au><au>Kim, Subin</au><au>Park, Gapyeol</au><au>Sim, Boogyo</au><au>Kim, Joungho</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Impact of On-Chip Interconnection in a Large-Scale Memristor Crossbar Array for Neural Network Accelerator and Neuromorphic Chip</atitle><btitle>2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)</btitle><stitle>EPEPS</stitle><date>2019-10</date><risdate>2019</risdate><spage>1</spage><epage>3</epage><pages>1-3</pages><eissn>2165-4115</eissn><eisbn>9781728145853</eisbn><eisbn>1728145856</eisbn><abstract>A crossbar array that combines computation and storage functions in non-volatile resistive memory is a promising artificial intelligence (AI) computing architecture. It is because it can largely save a significant energy from interconnection between a processor and a memory. However, the parasitic components from its dense interconnection can affect the electrical performance of noise-sensitive analog-computing and small read voltage margin of the memristor. In this paper, we designed a large-scale memristor crossbar array, and modeled it into equivalent circuit models and analyzed its signal integrity considering IR drop, crosstalk and ripple. These factors were compared depending on the physical dimension of on-chip interconnection and operating frequency. Based on the eye-diagram simulation, we could successfully demonstrate the voltage margin and timing margin for memristor operations.</abstract><pub>IEEE</pub><doi>10.1109/EPEPS47316.2019.193227</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2165-4115
ispartof 2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2019, p.1-3
issn 2165-4115
language eng
recordid cdi_ieee_primary_9073136
source IEEE Xplore All Conference Series
subjects Eye-diagram
Memristor crossbar array
On-chip interconnection
Signal integrity
title Impact of On-Chip Interconnection in a Large-Scale Memristor Crossbar Array for Neural Network Accelerator and Neuromorphic Chip
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Impact%20of%20On-Chip%20Interconnection%20in%20a%20Large-Scale%20Memristor%20Crossbar%20Array%20for%20Neural%20Network%20Accelerator%20and%20Neuromorphic%20Chip&rft.btitle=2019%20IEEE%2028th%20Conference%20on%20Electrical%20Performance%20of%20Electronic%20Packaging%20and%20Systems%20(EPEPS)&rft.au=Shin,%20Taein&rft.date=2019-10&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.eissn=2165-4115&rft_id=info:doi/10.1109/EPEPS47316.2019.193227&rft.eisbn=9781728145853&rft.eisbn_list=1728145856&rft_dat=%3Cieee_CHZPO%3E9073136%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-ffdcb0cf85d54ac028ce7068a92459f5e9869a55b6fa7b533620b209e142e9ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9073136&rfr_iscdi=true