Loading…

Hyperspectral Image Classification Bi-dimensional Empirical mode Decomposition and Deep Residual Networks

In this study a novel approach of hyperspectral image classification technique is realized using BEMD (Bi-Dimensional Empirical Mode Decomposition) and Deep Residual Networks. First Principal Component of the hyperspectral image dataset is computed using PCA(Principal Component Analysis) feature ext...

Full description

Saved in:
Bibliographic Details
Main Authors: Jonnadula, Harikiran, Kumar, Ladi Sandeep, Panda, G. K., Dash, Ratnakar, Kumar, Ladi Pradeep
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Jonnadula, Harikiran
Kumar, Ladi Sandeep
Panda, G. K.
Dash, Ratnakar
Kumar, Ladi Pradeep
description In this study a novel approach of hyperspectral image classification technique is realized using BEMD (Bi-Dimensional Empirical Mode Decomposition) and Deep Residual Networks. First Principal Component of the hyperspectral image dataset is computed using PCA(Principal Component Analysis) feature extraction technique. The model also adapts BEMD algorithm to divide the principle component into three hierarchical components and obtain BIMFs (Bi-Dimensional Intrinsic Mode Functions) and residue-image. These BIMFs and residue image is further taken as input to the deep residual network for classification. The results of experiments on two popular datasets of hyperspectral remote sensing scenes represent that the proposed-model offers a competitive analytical-performance in comparison to some established methods.
doi_str_mv 10.1109/AISP48273.2020.9073241
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9073241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9073241</ieee_id><sourcerecordid>9073241</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-411bc8031ec567c09f7fd734e8985ba16bd60e756e3f60e5137ca1b6be7b7aee3</originalsourceid><addsrcrecordid>eNpVkNtKw0AQhldFsNQ8gSB5gdSZPeey1tYWioqH67LZTGQ1aUI2In17g_bGq39mvo-5-Bm7RpghQn4z37w8ScuNmHHgMMvBCC7xhCW5sWi4RSmVhVM24VpCpoy2Z_-Y1hcsifEDAAQHoYScsLA-dNTHjvzQuzrdNO6d0kXtYgxV8G4I7T69DVkZGtrHcRmdZdOFfmR12rQlpXfk26ZrY_h13b4cL9SlzxRD-TVKDzR8t_1nvGTnlasjJcecsrfV8nWxzraP95vFfJsFRDtkErHwFgSSV9p4yCtTlUZIsrlVhUNdlBrIKE2iGgeFwniHhS7IFMYRiSm7-vsbiGjX9aFx_WF3LEv8AO08Xd4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hyperspectral Image Classification Bi-dimensional Empirical mode Decomposition and Deep Residual Networks</title><source>IEEE Xplore All Conference Series</source><creator>Jonnadula, Harikiran ; Kumar, Ladi Sandeep ; Panda, G. K. ; Dash, Ratnakar ; Kumar, Ladi Pradeep</creator><creatorcontrib>Jonnadula, Harikiran ; Kumar, Ladi Sandeep ; Panda, G. K. ; Dash, Ratnakar ; Kumar, Ladi Pradeep</creatorcontrib><description>In this study a novel approach of hyperspectral image classification technique is realized using BEMD (Bi-Dimensional Empirical Mode Decomposition) and Deep Residual Networks. First Principal Component of the hyperspectral image dataset is computed using PCA(Principal Component Analysis) feature extraction technique. The model also adapts BEMD algorithm to divide the principle component into three hierarchical components and obtain BIMFs (Bi-Dimensional Intrinsic Mode Functions) and residue-image. These BIMFs and residue image is further taken as input to the deep residual network for classification. The results of experiments on two popular datasets of hyperspectral remote sensing scenes represent that the proposed-model offers a competitive analytical-performance in comparison to some established methods.</description><identifier>ISBN: 9781728144566</identifier><identifier>ISBN: 1728144566</identifier><identifier>EISSN: 2640-5768</identifier><identifier>EISBN: 9781728144580</identifier><identifier>EISBN: 1728144582</identifier><identifier>DOI: 10.1109/AISP48273.2020.9073241</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bi-dimensional Empirical Mode Decomposition ; Classification ; Deep Residual Networks ; Feature extraction ; Hyperspectral Image ; Hyperspectral imaging ; Image Processing ; Kernel ; Neural networks ; Principal component analysis ; RESNET</subject><ispartof>2020 International Conference on Artificial Intelligence and Signal Processing (AISP), 2020, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9073241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9073241$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jonnadula, Harikiran</creatorcontrib><creatorcontrib>Kumar, Ladi Sandeep</creatorcontrib><creatorcontrib>Panda, G. K.</creatorcontrib><creatorcontrib>Dash, Ratnakar</creatorcontrib><creatorcontrib>Kumar, Ladi Pradeep</creatorcontrib><title>Hyperspectral Image Classification Bi-dimensional Empirical mode Decomposition and Deep Residual Networks</title><title>2020 International Conference on Artificial Intelligence and Signal Processing (AISP)</title><addtitle>AISP</addtitle><description>In this study a novel approach of hyperspectral image classification technique is realized using BEMD (Bi-Dimensional Empirical Mode Decomposition) and Deep Residual Networks. First Principal Component of the hyperspectral image dataset is computed using PCA(Principal Component Analysis) feature extraction technique. The model also adapts BEMD algorithm to divide the principle component into three hierarchical components and obtain BIMFs (Bi-Dimensional Intrinsic Mode Functions) and residue-image. These BIMFs and residue image is further taken as input to the deep residual network for classification. The results of experiments on two popular datasets of hyperspectral remote sensing scenes represent that the proposed-model offers a competitive analytical-performance in comparison to some established methods.</description><subject>Bi-dimensional Empirical Mode Decomposition</subject><subject>Classification</subject><subject>Deep Residual Networks</subject><subject>Feature extraction</subject><subject>Hyperspectral Image</subject><subject>Hyperspectral imaging</subject><subject>Image Processing</subject><subject>Kernel</subject><subject>Neural networks</subject><subject>Principal component analysis</subject><subject>RESNET</subject><issn>2640-5768</issn><isbn>9781728144566</isbn><isbn>1728144566</isbn><isbn>9781728144580</isbn><isbn>1728144582</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkNtKw0AQhldFsNQ8gSB5gdSZPeey1tYWioqH67LZTGQ1aUI2In17g_bGq39mvo-5-Bm7RpghQn4z37w8ScuNmHHgMMvBCC7xhCW5sWi4RSmVhVM24VpCpoy2Z_-Y1hcsifEDAAQHoYScsLA-dNTHjvzQuzrdNO6d0kXtYgxV8G4I7T69DVkZGtrHcRmdZdOFfmR12rQlpXfk26ZrY_h13b4cL9SlzxRD-TVKDzR8t_1nvGTnlasjJcecsrfV8nWxzraP95vFfJsFRDtkErHwFgSSV9p4yCtTlUZIsrlVhUNdlBrIKE2iGgeFwniHhS7IFMYRiSm7-vsbiGjX9aFx_WF3LEv8AO08Xd4</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Jonnadula, Harikiran</creator><creator>Kumar, Ladi Sandeep</creator><creator>Panda, G. K.</creator><creator>Dash, Ratnakar</creator><creator>Kumar, Ladi Pradeep</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202001</creationdate><title>Hyperspectral Image Classification Bi-dimensional Empirical mode Decomposition and Deep Residual Networks</title><author>Jonnadula, Harikiran ; Kumar, Ladi Sandeep ; Panda, G. K. ; Dash, Ratnakar ; Kumar, Ladi Pradeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-411bc8031ec567c09f7fd734e8985ba16bd60e756e3f60e5137ca1b6be7b7aee3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bi-dimensional Empirical Mode Decomposition</topic><topic>Classification</topic><topic>Deep Residual Networks</topic><topic>Feature extraction</topic><topic>Hyperspectral Image</topic><topic>Hyperspectral imaging</topic><topic>Image Processing</topic><topic>Kernel</topic><topic>Neural networks</topic><topic>Principal component analysis</topic><topic>RESNET</topic><toplevel>online_resources</toplevel><creatorcontrib>Jonnadula, Harikiran</creatorcontrib><creatorcontrib>Kumar, Ladi Sandeep</creatorcontrib><creatorcontrib>Panda, G. K.</creatorcontrib><creatorcontrib>Dash, Ratnakar</creatorcontrib><creatorcontrib>Kumar, Ladi Pradeep</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jonnadula, Harikiran</au><au>Kumar, Ladi Sandeep</au><au>Panda, G. K.</au><au>Dash, Ratnakar</au><au>Kumar, Ladi Pradeep</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hyperspectral Image Classification Bi-dimensional Empirical mode Decomposition and Deep Residual Networks</atitle><btitle>2020 International Conference on Artificial Intelligence and Signal Processing (AISP)</btitle><stitle>AISP</stitle><date>2020-01</date><risdate>2020</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2640-5768</eissn><isbn>9781728144566</isbn><isbn>1728144566</isbn><eisbn>9781728144580</eisbn><eisbn>1728144582</eisbn><abstract>In this study a novel approach of hyperspectral image classification technique is realized using BEMD (Bi-Dimensional Empirical Mode Decomposition) and Deep Residual Networks. First Principal Component of the hyperspectral image dataset is computed using PCA(Principal Component Analysis) feature extraction technique. The model also adapts BEMD algorithm to divide the principle component into three hierarchical components and obtain BIMFs (Bi-Dimensional Intrinsic Mode Functions) and residue-image. These BIMFs and residue image is further taken as input to the deep residual network for classification. The results of experiments on two popular datasets of hyperspectral remote sensing scenes represent that the proposed-model offers a competitive analytical-performance in comparison to some established methods.</abstract><pub>IEEE</pub><doi>10.1109/AISP48273.2020.9073241</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781728144566
ispartof 2020 International Conference on Artificial Intelligence and Signal Processing (AISP), 2020, p.1-6
issn 2640-5768
language eng
recordid cdi_ieee_primary_9073241
source IEEE Xplore All Conference Series
subjects Bi-dimensional Empirical Mode Decomposition
Classification
Deep Residual Networks
Feature extraction
Hyperspectral Image
Hyperspectral imaging
Image Processing
Kernel
Neural networks
Principal component analysis
RESNET
title Hyperspectral Image Classification Bi-dimensional Empirical mode Decomposition and Deep Residual Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hyperspectral%20Image%20Classification%20Bi-dimensional%20Empirical%20mode%20Decomposition%20and%20Deep%20Residual%20Networks&rft.btitle=2020%20International%20Conference%20on%20Artificial%20Intelligence%20and%20Signal%20Processing%20(AISP)&rft.au=Jonnadula,%20Harikiran&rft.date=2020-01&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2640-5768&rft.isbn=9781728144566&rft.isbn_list=1728144566&rft_id=info:doi/10.1109/AISP48273.2020.9073241&rft.eisbn=9781728144580&rft.eisbn_list=1728144582&rft_dat=%3Cieee_CHZPO%3E9073241%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-411bc8031ec567c09f7fd734e8985ba16bd60e756e3f60e5137ca1b6be7b7aee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9073241&rfr_iscdi=true