Loading…

PlethAugment: GAN-Based PPG Augmentation for Medical Diagnosis in Low-Resource Settings

The paucity of physiological time-series data collected from low-resource clinical settings limits the capabilities of modern machine learning algorithms in achieving high performance. Such performance is further hindered by class imbalance; datasets where a diagnosis is much more common than others...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2020-11, Vol.24 (11), p.3226-3235
Main Authors: Kiyasseh, Dani, Tadesse, Girmaw Abebe, Nhan, Le Nguyen Thanh, Van Tan, Le, Thwaites, Louise, Zhu, Tingting, Clifton, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-c06c0a25842ec6832707c73f53a29070f2bfc96bbb700ad6403840041488e0c93
cites cdi_FETCH-LOGICAL-c392t-c06c0a25842ec6832707c73f53a29070f2bfc96bbb700ad6403840041488e0c93
container_end_page 3235
container_issue 11
container_start_page 3226
container_title IEEE journal of biomedical and health informatics
container_volume 24
creator Kiyasseh, Dani
Tadesse, Girmaw Abebe
Nhan, Le Nguyen Thanh
Van Tan, Le
Thwaites, Louise
Zhu, Tingting
Clifton, David
description The paucity of physiological time-series data collected from low-resource clinical settings limits the capabilities of modern machine learning algorithms in achieving high performance. Such performance is further hindered by class imbalance; datasets where a diagnosis is much more common than others. To overcome these two issues at low-cost while preserving privacy, data augmentation methods can be employed. In the time domain, the traditional method of time-warping could alter the underlying data distribution with detrimental consequences. This is prominent when dealing with physiological conditions that influence the frequency components of data. In this paper, we propose PlethAugment; three different conditional generative adversarial networks (CGANs) with an adapted diversity term for the generation of pathological photoplethysmogram (PPG) signals in order to boost medical classification performance. To evaluate and compare the GANs, we introduce a novel metric-agnostic method; the synthetic generalization curve . We validate this approach on two proprietary and two public datasets representing a diverse set of medical conditions. Compared to training on non-augmented class-balanced datasets, training on augmented datasets leads to an improvement of the AUROC by up to 29% when using cross validation. This illustrates the potential of the proposed CGANs to significantly improve classification performance.
doi_str_mv 10.1109/JBHI.2020.2979608
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9078801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9078801</ieee_id><sourcerecordid>2395600029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c06c0a25842ec6832707c73f53a29070f2bfc96bbb700ad6403840041488e0c93</originalsourceid><addsrcrecordid>eNpdkEtv1DAQgC0EolXbH4CQkCUuXLIdjxM_uG0fbIsWWLUgjpbjnSyuskmJEyH-PV7ttgfm4tH4m9HMx9gbATMhwJ5_vri5nSEgzNBqq8C8YMcolCkQwbx8yoUtj9hZSg-Qw-SSVa_ZkURZglX6mP1ctTT-mk-bLXXjR76Yfy0ufKI1X60W_FD2Y-w73vQD_0LrGHzLr6LfdH2KiceOL_s_xR2lfhoC8Xsax9ht0il71fg20dnhPWE_Pl1_v7wplt8Wt5fzZRGkxbEIoAJ4rEyJFJSRqEEHLZtKerSgocG6CVbVda0B_FqVIE0JUIrSGIJg5Qn7sJ_7OPS_J0qj28YUqG19R_2UHEpbqXw67tD3_6EPeecub-ewrLTVqCqZKbGnwtCnNFDjHoe49cNfJ8DtxLudeLcT7w7ic8-7w-Sp3tL6ueNJcwbe7oFIRM_f-UBjQMh_WTiDpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457972653</pqid></control><display><type>article</type><title>PlethAugment: GAN-Based PPG Augmentation for Medical Diagnosis in Low-Resource Settings</title><source>IEEE Xplore (Online service)</source><creator>Kiyasseh, Dani ; Tadesse, Girmaw Abebe ; Nhan, Le Nguyen Thanh ; Van Tan, Le ; Thwaites, Louise ; Zhu, Tingting ; Clifton, David</creator><creatorcontrib>Kiyasseh, Dani ; Tadesse, Girmaw Abebe ; Nhan, Le Nguyen Thanh ; Van Tan, Le ; Thwaites, Louise ; Zhu, Tingting ; Clifton, David</creatorcontrib><description>The paucity of physiological time-series data collected from low-resource clinical settings limits the capabilities of modern machine learning algorithms in achieving high performance. Such performance is further hindered by class imbalance; datasets where a diagnosis is much more common than others. To overcome these two issues at low-cost while preserving privacy, data augmentation methods can be employed. In the time domain, the traditional method of time-warping could alter the underlying data distribution with detrimental consequences. This is prominent when dealing with physiological conditions that influence the frequency components of data. In this paper, we propose PlethAugment; three different conditional generative adversarial networks (CGANs) with an adapted diversity term for the generation of pathological photoplethysmogram (PPG) signals in order to boost medical classification performance. To evaluate and compare the GANs, we introduce a novel metric-agnostic method; the synthetic generalization curve . We validate this approach on two proprietary and two public datasets representing a diverse set of medical conditions. Compared to training on non-augmented class-balanced datasets, training on augmented datasets leads to an improvement of the AUROC by up to 29% when using cross validation. This illustrates the potential of the proposed CGANs to significantly improve classification performance.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2020.2979608</identifier><identifier>PMID: 32340967</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biomedical imaging ; Classification ; Conditional generative adversarial networks ; Data augmentation ; Datasets ; Diagnosis ; Gallium nitride ; Generative adversarial networks ; Generators ; Humans ; Informatics ; Learning algorithms ; low-resource ; Machine Learning ; Medical diagnosis ; Performance evaluation ; photople-thysmogram ; Physiology ; Sensitivity ; Time domain analysis ; time-series ; Training</subject><ispartof>IEEE journal of biomedical and health informatics, 2020-11, Vol.24 (11), p.3226-3235</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c06c0a25842ec6832707c73f53a29070f2bfc96bbb700ad6403840041488e0c93</citedby><cites>FETCH-LOGICAL-c392t-c06c0a25842ec6832707c73f53a29070f2bfc96bbb700ad6403840041488e0c93</cites><orcidid>0000-0002-1552-5630 ; 0000-0002-2898-1790 ; 0000-0002-2648-9102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9078801$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32340967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiyasseh, Dani</creatorcontrib><creatorcontrib>Tadesse, Girmaw Abebe</creatorcontrib><creatorcontrib>Nhan, Le Nguyen Thanh</creatorcontrib><creatorcontrib>Van Tan, Le</creatorcontrib><creatorcontrib>Thwaites, Louise</creatorcontrib><creatorcontrib>Zhu, Tingting</creatorcontrib><creatorcontrib>Clifton, David</creatorcontrib><title>PlethAugment: GAN-Based PPG Augmentation for Medical Diagnosis in Low-Resource Settings</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>The paucity of physiological time-series data collected from low-resource clinical settings limits the capabilities of modern machine learning algorithms in achieving high performance. Such performance is further hindered by class imbalance; datasets where a diagnosis is much more common than others. To overcome these two issues at low-cost while preserving privacy, data augmentation methods can be employed. In the time domain, the traditional method of time-warping could alter the underlying data distribution with detrimental consequences. This is prominent when dealing with physiological conditions that influence the frequency components of data. In this paper, we propose PlethAugment; three different conditional generative adversarial networks (CGANs) with an adapted diversity term for the generation of pathological photoplethysmogram (PPG) signals in order to boost medical classification performance. To evaluate and compare the GANs, we introduce a novel metric-agnostic method; the synthetic generalization curve . We validate this approach on two proprietary and two public datasets representing a diverse set of medical conditions. Compared to training on non-augmented class-balanced datasets, training on augmented datasets leads to an improvement of the AUROC by up to 29% when using cross validation. This illustrates the potential of the proposed CGANs to significantly improve classification performance.</description><subject>Algorithms</subject><subject>Biomedical imaging</subject><subject>Classification</subject><subject>Conditional generative adversarial networks</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Diagnosis</subject><subject>Gallium nitride</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Humans</subject><subject>Informatics</subject><subject>Learning algorithms</subject><subject>low-resource</subject><subject>Machine Learning</subject><subject>Medical diagnosis</subject><subject>Performance evaluation</subject><subject>photople-thysmogram</subject><subject>Physiology</subject><subject>Sensitivity</subject><subject>Time domain analysis</subject><subject>time-series</subject><subject>Training</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkEtv1DAQgC0EolXbH4CQkCUuXLIdjxM_uG0fbIsWWLUgjpbjnSyuskmJEyH-PV7ttgfm4tH4m9HMx9gbATMhwJ5_vri5nSEgzNBqq8C8YMcolCkQwbx8yoUtj9hZSg-Qw-SSVa_ZkURZglX6mP1ctTT-mk-bLXXjR76Yfy0ufKI1X60W_FD2Y-w73vQD_0LrGHzLr6LfdH2KiceOL_s_xR2lfhoC8Xsax9ht0il71fg20dnhPWE_Pl1_v7wplt8Wt5fzZRGkxbEIoAJ4rEyJFJSRqEEHLZtKerSgocG6CVbVda0B_FqVIE0JUIrSGIJg5Qn7sJ_7OPS_J0qj28YUqG19R_2UHEpbqXw67tD3_6EPeecub-ewrLTVqCqZKbGnwtCnNFDjHoe49cNfJ8DtxLudeLcT7w7ic8-7w-Sp3tL6ueNJcwbe7oFIRM_f-UBjQMh_WTiDpA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Kiyasseh, Dani</creator><creator>Tadesse, Girmaw Abebe</creator><creator>Nhan, Le Nguyen Thanh</creator><creator>Van Tan, Le</creator><creator>Thwaites, Louise</creator><creator>Zhu, Tingting</creator><creator>Clifton, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1552-5630</orcidid><orcidid>https://orcid.org/0000-0002-2898-1790</orcidid><orcidid>https://orcid.org/0000-0002-2648-9102</orcidid></search><sort><creationdate>20201101</creationdate><title>PlethAugment: GAN-Based PPG Augmentation for Medical Diagnosis in Low-Resource Settings</title><author>Kiyasseh, Dani ; Tadesse, Girmaw Abebe ; Nhan, Le Nguyen Thanh ; Van Tan, Le ; Thwaites, Louise ; Zhu, Tingting ; Clifton, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c06c0a25842ec6832707c73f53a29070f2bfc96bbb700ad6403840041488e0c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biomedical imaging</topic><topic>Classification</topic><topic>Conditional generative adversarial networks</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Diagnosis</topic><topic>Gallium nitride</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Humans</topic><topic>Informatics</topic><topic>Learning algorithms</topic><topic>low-resource</topic><topic>Machine Learning</topic><topic>Medical diagnosis</topic><topic>Performance evaluation</topic><topic>photople-thysmogram</topic><topic>Physiology</topic><topic>Sensitivity</topic><topic>Time domain analysis</topic><topic>time-series</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiyasseh, Dani</creatorcontrib><creatorcontrib>Tadesse, Girmaw Abebe</creatorcontrib><creatorcontrib>Nhan, Le Nguyen Thanh</creatorcontrib><creatorcontrib>Van Tan, Le</creatorcontrib><creatorcontrib>Thwaites, Louise</creatorcontrib><creatorcontrib>Zhu, Tingting</creatorcontrib><creatorcontrib>Clifton, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiyasseh, Dani</au><au>Tadesse, Girmaw Abebe</au><au>Nhan, Le Nguyen Thanh</au><au>Van Tan, Le</au><au>Thwaites, Louise</au><au>Zhu, Tingting</au><au>Clifton, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PlethAugment: GAN-Based PPG Augmentation for Medical Diagnosis in Low-Resource Settings</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>24</volume><issue>11</issue><spage>3226</spage><epage>3235</epage><pages>3226-3235</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>The paucity of physiological time-series data collected from low-resource clinical settings limits the capabilities of modern machine learning algorithms in achieving high performance. Such performance is further hindered by class imbalance; datasets where a diagnosis is much more common than others. To overcome these two issues at low-cost while preserving privacy, data augmentation methods can be employed. In the time domain, the traditional method of time-warping could alter the underlying data distribution with detrimental consequences. This is prominent when dealing with physiological conditions that influence the frequency components of data. In this paper, we propose PlethAugment; three different conditional generative adversarial networks (CGANs) with an adapted diversity term for the generation of pathological photoplethysmogram (PPG) signals in order to boost medical classification performance. To evaluate and compare the GANs, we introduce a novel metric-agnostic method; the synthetic generalization curve . We validate this approach on two proprietary and two public datasets representing a diverse set of medical conditions. Compared to training on non-augmented class-balanced datasets, training on augmented datasets leads to an improvement of the AUROC by up to 29% when using cross validation. This illustrates the potential of the proposed CGANs to significantly improve classification performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32340967</pmid><doi>10.1109/JBHI.2020.2979608</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1552-5630</orcidid><orcidid>https://orcid.org/0000-0002-2898-1790</orcidid><orcidid>https://orcid.org/0000-0002-2648-9102</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2020-11, Vol.24 (11), p.3226-3235
issn 2168-2194
2168-2208
language eng
recordid cdi_ieee_primary_9078801
source IEEE Xplore (Online service)
subjects Algorithms
Biomedical imaging
Classification
Conditional generative adversarial networks
Data augmentation
Datasets
Diagnosis
Gallium nitride
Generative adversarial networks
Generators
Humans
Informatics
Learning algorithms
low-resource
Machine Learning
Medical diagnosis
Performance evaluation
photople-thysmogram
Physiology
Sensitivity
Time domain analysis
time-series
Training
title PlethAugment: GAN-Based PPG Augmentation for Medical Diagnosis in Low-Resource Settings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A07%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PlethAugment:%20GAN-Based%20PPG%20Augmentation%20for%20Medical%20Diagnosis%20in%20Low-Resource%20Settings&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Kiyasseh,%20Dani&rft.date=2020-11-01&rft.volume=24&rft.issue=11&rft.spage=3226&rft.epage=3235&rft.pages=3226-3235&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2020.2979608&rft_dat=%3Cproquest_ieee_%3E2395600029%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-c06c0a25842ec6832707c73f53a29070f2bfc96bbb700ad6403840041488e0c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2457972653&rft_id=info:pmid/32340967&rft_ieee_id=9078801&rfr_iscdi=true