Loading…
PlethAugment: GAN-Based PPG Augmentation for Medical Diagnosis in Low-Resource Settings
The paucity of physiological time-series data collected from low-resource clinical settings limits the capabilities of modern machine learning algorithms in achieving high performance. Such performance is further hindered by class imbalance; datasets where a diagnosis is much more common than others...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2020-11, Vol.24 (11), p.3226-3235 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-c06c0a25842ec6832707c73f53a29070f2bfc96bbb700ad6403840041488e0c93 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-c06c0a25842ec6832707c73f53a29070f2bfc96bbb700ad6403840041488e0c93 |
container_end_page | 3235 |
container_issue | 11 |
container_start_page | 3226 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 24 |
creator | Kiyasseh, Dani Tadesse, Girmaw Abebe Nhan, Le Nguyen Thanh Van Tan, Le Thwaites, Louise Zhu, Tingting Clifton, David |
description | The paucity of physiological time-series data collected from low-resource clinical settings limits the capabilities of modern machine learning algorithms in achieving high performance. Such performance is further hindered by class imbalance; datasets where a diagnosis is much more common than others. To overcome these two issues at low-cost while preserving privacy, data augmentation methods can be employed. In the time domain, the traditional method of time-warping could alter the underlying data distribution with detrimental consequences. This is prominent when dealing with physiological conditions that influence the frequency components of data. In this paper, we propose PlethAugment; three different conditional generative adversarial networks (CGANs) with an adapted diversity term for the generation of pathological photoplethysmogram (PPG) signals in order to boost medical classification performance. To evaluate and compare the GANs, we introduce a novel metric-agnostic method; the synthetic generalization curve . We validate this approach on two proprietary and two public datasets representing a diverse set of medical conditions. Compared to training on non-augmented class-balanced datasets, training on augmented datasets leads to an improvement of the AUROC by up to 29% when using cross validation. This illustrates the potential of the proposed CGANs to significantly improve classification performance. |
doi_str_mv | 10.1109/JBHI.2020.2979608 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9078801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9078801</ieee_id><sourcerecordid>2395600029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c06c0a25842ec6832707c73f53a29070f2bfc96bbb700ad6403840041488e0c93</originalsourceid><addsrcrecordid>eNpdkEtv1DAQgC0EolXbH4CQkCUuXLIdjxM_uG0fbIsWWLUgjpbjnSyuskmJEyH-PV7ttgfm4tH4m9HMx9gbATMhwJ5_vri5nSEgzNBqq8C8YMcolCkQwbx8yoUtj9hZSg-Qw-SSVa_ZkURZglX6mP1ctTT-mk-bLXXjR76Yfy0ufKI1X60W_FD2Y-w73vQD_0LrGHzLr6LfdH2KiceOL_s_xR2lfhoC8Xsax9ht0il71fg20dnhPWE_Pl1_v7wplt8Wt5fzZRGkxbEIoAJ4rEyJFJSRqEEHLZtKerSgocG6CVbVda0B_FqVIE0JUIrSGIJg5Qn7sJ_7OPS_J0qj28YUqG19R_2UHEpbqXw67tD3_6EPeecub-ewrLTVqCqZKbGnwtCnNFDjHoe49cNfJ8DtxLudeLcT7w7ic8-7w-Sp3tL6ueNJcwbe7oFIRM_f-UBjQMh_WTiDpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457972653</pqid></control><display><type>article</type><title>PlethAugment: GAN-Based PPG Augmentation for Medical Diagnosis in Low-Resource Settings</title><source>IEEE Xplore (Online service)</source><creator>Kiyasseh, Dani ; Tadesse, Girmaw Abebe ; Nhan, Le Nguyen Thanh ; Van Tan, Le ; Thwaites, Louise ; Zhu, Tingting ; Clifton, David</creator><creatorcontrib>Kiyasseh, Dani ; Tadesse, Girmaw Abebe ; Nhan, Le Nguyen Thanh ; Van Tan, Le ; Thwaites, Louise ; Zhu, Tingting ; Clifton, David</creatorcontrib><description>The paucity of physiological time-series data collected from low-resource clinical settings limits the capabilities of modern machine learning algorithms in achieving high performance. Such performance is further hindered by class imbalance; datasets where a diagnosis is much more common than others. To overcome these two issues at low-cost while preserving privacy, data augmentation methods can be employed. In the time domain, the traditional method of time-warping could alter the underlying data distribution with detrimental consequences. This is prominent when dealing with physiological conditions that influence the frequency components of data. In this paper, we propose PlethAugment; three different conditional generative adversarial networks (CGANs) with an adapted diversity term for the generation of pathological photoplethysmogram (PPG) signals in order to boost medical classification performance. To evaluate and compare the GANs, we introduce a novel metric-agnostic method; the synthetic generalization curve . We validate this approach on two proprietary and two public datasets representing a diverse set of medical conditions. Compared to training on non-augmented class-balanced datasets, training on augmented datasets leads to an improvement of the AUROC by up to 29% when using cross validation. This illustrates the potential of the proposed CGANs to significantly improve classification performance.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2020.2979608</identifier><identifier>PMID: 32340967</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biomedical imaging ; Classification ; Conditional generative adversarial networks ; Data augmentation ; Datasets ; Diagnosis ; Gallium nitride ; Generative adversarial networks ; Generators ; Humans ; Informatics ; Learning algorithms ; low-resource ; Machine Learning ; Medical diagnosis ; Performance evaluation ; photople-thysmogram ; Physiology ; Sensitivity ; Time domain analysis ; time-series ; Training</subject><ispartof>IEEE journal of biomedical and health informatics, 2020-11, Vol.24 (11), p.3226-3235</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c06c0a25842ec6832707c73f53a29070f2bfc96bbb700ad6403840041488e0c93</citedby><cites>FETCH-LOGICAL-c392t-c06c0a25842ec6832707c73f53a29070f2bfc96bbb700ad6403840041488e0c93</cites><orcidid>0000-0002-1552-5630 ; 0000-0002-2898-1790 ; 0000-0002-2648-9102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9078801$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32340967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiyasseh, Dani</creatorcontrib><creatorcontrib>Tadesse, Girmaw Abebe</creatorcontrib><creatorcontrib>Nhan, Le Nguyen Thanh</creatorcontrib><creatorcontrib>Van Tan, Le</creatorcontrib><creatorcontrib>Thwaites, Louise</creatorcontrib><creatorcontrib>Zhu, Tingting</creatorcontrib><creatorcontrib>Clifton, David</creatorcontrib><title>PlethAugment: GAN-Based PPG Augmentation for Medical Diagnosis in Low-Resource Settings</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>The paucity of physiological time-series data collected from low-resource clinical settings limits the capabilities of modern machine learning algorithms in achieving high performance. Such performance is further hindered by class imbalance; datasets where a diagnosis is much more common than others. To overcome these two issues at low-cost while preserving privacy, data augmentation methods can be employed. In the time domain, the traditional method of time-warping could alter the underlying data distribution with detrimental consequences. This is prominent when dealing with physiological conditions that influence the frequency components of data. In this paper, we propose PlethAugment; three different conditional generative adversarial networks (CGANs) with an adapted diversity term for the generation of pathological photoplethysmogram (PPG) signals in order to boost medical classification performance. To evaluate and compare the GANs, we introduce a novel metric-agnostic method; the synthetic generalization curve . We validate this approach on two proprietary and two public datasets representing a diverse set of medical conditions. Compared to training on non-augmented class-balanced datasets, training on augmented datasets leads to an improvement of the AUROC by up to 29% when using cross validation. This illustrates the potential of the proposed CGANs to significantly improve classification performance.</description><subject>Algorithms</subject><subject>Biomedical imaging</subject><subject>Classification</subject><subject>Conditional generative adversarial networks</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Diagnosis</subject><subject>Gallium nitride</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Humans</subject><subject>Informatics</subject><subject>Learning algorithms</subject><subject>low-resource</subject><subject>Machine Learning</subject><subject>Medical diagnosis</subject><subject>Performance evaluation</subject><subject>photople-thysmogram</subject><subject>Physiology</subject><subject>Sensitivity</subject><subject>Time domain analysis</subject><subject>time-series</subject><subject>Training</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkEtv1DAQgC0EolXbH4CQkCUuXLIdjxM_uG0fbIsWWLUgjpbjnSyuskmJEyH-PV7ttgfm4tH4m9HMx9gbATMhwJ5_vri5nSEgzNBqq8C8YMcolCkQwbx8yoUtj9hZSg-Qw-SSVa_ZkURZglX6mP1ctTT-mk-bLXXjR76Yfy0ufKI1X60W_FD2Y-w73vQD_0LrGHzLr6LfdH2KiceOL_s_xR2lfhoC8Xsax9ht0il71fg20dnhPWE_Pl1_v7wplt8Wt5fzZRGkxbEIoAJ4rEyJFJSRqEEHLZtKerSgocG6CVbVda0B_FqVIE0JUIrSGIJg5Qn7sJ_7OPS_J0qj28YUqG19R_2UHEpbqXw67tD3_6EPeecub-ewrLTVqCqZKbGnwtCnNFDjHoe49cNfJ8DtxLudeLcT7w7ic8-7w-Sp3tL6ueNJcwbe7oFIRM_f-UBjQMh_WTiDpA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Kiyasseh, Dani</creator><creator>Tadesse, Girmaw Abebe</creator><creator>Nhan, Le Nguyen Thanh</creator><creator>Van Tan, Le</creator><creator>Thwaites, Louise</creator><creator>Zhu, Tingting</creator><creator>Clifton, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1552-5630</orcidid><orcidid>https://orcid.org/0000-0002-2898-1790</orcidid><orcidid>https://orcid.org/0000-0002-2648-9102</orcidid></search><sort><creationdate>20201101</creationdate><title>PlethAugment: GAN-Based PPG Augmentation for Medical Diagnosis in Low-Resource Settings</title><author>Kiyasseh, Dani ; Tadesse, Girmaw Abebe ; Nhan, Le Nguyen Thanh ; Van Tan, Le ; Thwaites, Louise ; Zhu, Tingting ; Clifton, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c06c0a25842ec6832707c73f53a29070f2bfc96bbb700ad6403840041488e0c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biomedical imaging</topic><topic>Classification</topic><topic>Conditional generative adversarial networks</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Diagnosis</topic><topic>Gallium nitride</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Humans</topic><topic>Informatics</topic><topic>Learning algorithms</topic><topic>low-resource</topic><topic>Machine Learning</topic><topic>Medical diagnosis</topic><topic>Performance evaluation</topic><topic>photople-thysmogram</topic><topic>Physiology</topic><topic>Sensitivity</topic><topic>Time domain analysis</topic><topic>time-series</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiyasseh, Dani</creatorcontrib><creatorcontrib>Tadesse, Girmaw Abebe</creatorcontrib><creatorcontrib>Nhan, Le Nguyen Thanh</creatorcontrib><creatorcontrib>Van Tan, Le</creatorcontrib><creatorcontrib>Thwaites, Louise</creatorcontrib><creatorcontrib>Zhu, Tingting</creatorcontrib><creatorcontrib>Clifton, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiyasseh, Dani</au><au>Tadesse, Girmaw Abebe</au><au>Nhan, Le Nguyen Thanh</au><au>Van Tan, Le</au><au>Thwaites, Louise</au><au>Zhu, Tingting</au><au>Clifton, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PlethAugment: GAN-Based PPG Augmentation for Medical Diagnosis in Low-Resource Settings</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>24</volume><issue>11</issue><spage>3226</spage><epage>3235</epage><pages>3226-3235</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>The paucity of physiological time-series data collected from low-resource clinical settings limits the capabilities of modern machine learning algorithms in achieving high performance. Such performance is further hindered by class imbalance; datasets where a diagnosis is much more common than others. To overcome these two issues at low-cost while preserving privacy, data augmentation methods can be employed. In the time domain, the traditional method of time-warping could alter the underlying data distribution with detrimental consequences. This is prominent when dealing with physiological conditions that influence the frequency components of data. In this paper, we propose PlethAugment; three different conditional generative adversarial networks (CGANs) with an adapted diversity term for the generation of pathological photoplethysmogram (PPG) signals in order to boost medical classification performance. To evaluate and compare the GANs, we introduce a novel metric-agnostic method; the synthetic generalization curve . We validate this approach on two proprietary and two public datasets representing a diverse set of medical conditions. Compared to training on non-augmented class-balanced datasets, training on augmented datasets leads to an improvement of the AUROC by up to 29% when using cross validation. This illustrates the potential of the proposed CGANs to significantly improve classification performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32340967</pmid><doi>10.1109/JBHI.2020.2979608</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1552-5630</orcidid><orcidid>https://orcid.org/0000-0002-2898-1790</orcidid><orcidid>https://orcid.org/0000-0002-2648-9102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2020-11, Vol.24 (11), p.3226-3235 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_ieee_primary_9078801 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Biomedical imaging Classification Conditional generative adversarial networks Data augmentation Datasets Diagnosis Gallium nitride Generative adversarial networks Generators Humans Informatics Learning algorithms low-resource Machine Learning Medical diagnosis Performance evaluation photople-thysmogram Physiology Sensitivity Time domain analysis time-series Training |
title | PlethAugment: GAN-Based PPG Augmentation for Medical Diagnosis in Low-Resource Settings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A07%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PlethAugment:%20GAN-Based%20PPG%20Augmentation%20for%20Medical%20Diagnosis%20in%20Low-Resource%20Settings&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Kiyasseh,%20Dani&rft.date=2020-11-01&rft.volume=24&rft.issue=11&rft.spage=3226&rft.epage=3235&rft.pages=3226-3235&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2020.2979608&rft_dat=%3Cproquest_ieee_%3E2395600029%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-c06c0a25842ec6832707c73f53a29070f2bfc96bbb700ad6403840041488e0c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2457972653&rft_id=info:pmid/32340967&rft_ieee_id=9078801&rfr_iscdi=true |