Loading…

Single Sideband Transmission Employing a 1-to-4 ADC Frontend and Parallel Digitization

Distributed data-centers have emerged as a key architecture for future optical networks. This architecture relies on power and cost-efficient high-speed fiber optical connections over distances up to 80 km which can be densely wavelength-division multiplexed (WDM) in the C-band. Recently, single-pol...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2020-06, Vol.38 (12), p.3125-3134
Main Authors: Le, Son Thai, Schuh, Karsten, Buchali, Fred, Du, Xuan-Quang, Grozing, Markus, Berroth, Manfred, Schmalen, Laurent, Buelow, Henning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Distributed data-centers have emerged as a key architecture for future optical networks. This architecture relies on power and cost-efficient high-speed fiber optical connections over distances up to 80 km which can be densely wavelength-division multiplexed (WDM) in the C-band. Recently, single-polarization single sideband (SSB) direct detection (DD) has been considered as an attractive transmission scheme for achieving data rates beyond 100 Gb/s per channel over 80 km. The advantages of SSB DD transmission includes the simple transceiver architecture and the capability of electronic dispersion compensation. However, the required digitizer's bandwidth in a single-polarization SSB transmission is around four times higher than in those of a conventional dual-polarization coherent detection system offering the same data rate. This critical issue prevents the practical implementation of high-speed SSB digital signal processing (DSP) in CMOS ASIC. To address this problem, we consider in this work a 112 GSa/s SiGe HBT BiCMOS ADC frontend. Using this ADC front-end, we experimentally demonstrate a WDM SSB DD transmission at a net data rate of 200 Gb/s per channel over 80 km while using only 14 GHz of digitizer's bandwidth which is comparable to those of a full-coherent counterpart.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2020.2995539