Loading…

Circular Anchors for the Detection of Hematopoietic Cells Using Retinanet

Analysis of the blood cell distribution in bone marrow is necessary for a detailed diagnosis of many hematopoietic diseases, such as leukemia. While this task is performed manually on microscope images in clinical routine, automating it could improve reliability and objectivity. Cell detection tasks...

Full description

Saved in:
Bibliographic Details
Main Authors: Grabel, Philipp, Ozkan, Ozcan, Crysandt, Martina, Herwartz, Reinhild, Baumann, Melanie, Klinkhammer, Barbara M., Boor, Peter, Brummendorf, Tim H., Merhof, Dorit
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 253
container_issue
container_start_page 249
container_title
container_volume
creator Grabel, Philipp
Ozkan, Ozcan
Crysandt, Martina
Herwartz, Reinhild
Baumann, Melanie
Klinkhammer, Barbara M.
Boor, Peter
Brummendorf, Tim H.
Merhof, Dorit
description Analysis of the blood cell distribution in bone marrow is necessary for a detailed diagnosis of many hematopoietic diseases, such as leukemia. While this task is performed manually on microscope images in clinical routine, automating it could improve reliability and objectivity. Cell detection tasks in medical imaging have successfully been solved using deep learning, in particular with RetinaNet, a powerful network architecture that yields good detection results in this scenario. It utilizes axis-parallel, rectangular bounding boxes to describe an object's position and size. However, since cells are mostly circular, this is suboptimal. We replace RetinaNet's anchors with more suitable Circular Anchors, which cover the shape of cells more precisely. We further introduce an extension to the Non-maximum Suppression algorithm that copes with predictions that differ in size. Experiments on hematopoietic cells in bone marrow images show that these methods reduce the number of false positive predictions and increase detection accuracy.
doi_str_mv 10.1109/ISBI45749.2020.9098398
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9098398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9098398</ieee_id><sourcerecordid>9098398</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-45bb988bc445c003e20cf7a551617f809722efbc1aa5e71114db54892b6019c53</originalsourceid><addsrcrecordid>eNotj81KAzEURqMgWGufQJC8wIw3fzPJso7WDhQEteuSxBsbmU7KJC58ewv22xw4iwMfIfcMasbAPPTvj71UrTQ1Bw61AaOF0RfkhimhGyMEqEsyY0aqSkvFr8ki5284rZVSgJyRvouT_xnsRJej36cp05AmWvZIn7CgLzGNNAW6xoMt6Zgiluhph8OQ6TbH8Yu-ncxoRyy35CrYIePizDnZrp4_unW1eX3pu-WmihxEqaRyzmjtvJTKAwjk4ENrlWINa4MG03KOwXlmrcKWMSY_nZLacNcAM16JObn770ZE3B2neLDT7-78XPwBymFNAg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Circular Anchors for the Detection of Hematopoietic Cells Using Retinanet</title><source>IEEE Xplore All Conference Series</source><creator>Grabel, Philipp ; Ozkan, Ozcan ; Crysandt, Martina ; Herwartz, Reinhild ; Baumann, Melanie ; Klinkhammer, Barbara M. ; Boor, Peter ; Brummendorf, Tim H. ; Merhof, Dorit</creator><creatorcontrib>Grabel, Philipp ; Ozkan, Ozcan ; Crysandt, Martina ; Herwartz, Reinhild ; Baumann, Melanie ; Klinkhammer, Barbara M. ; Boor, Peter ; Brummendorf, Tim H. ; Merhof, Dorit</creatorcontrib><description>Analysis of the blood cell distribution in bone marrow is necessary for a detailed diagnosis of many hematopoietic diseases, such as leukemia. While this task is performed manually on microscope images in clinical routine, automating it could improve reliability and objectivity. Cell detection tasks in medical imaging have successfully been solved using deep learning, in particular with RetinaNet, a powerful network architecture that yields good detection results in this scenario. It utilizes axis-parallel, rectangular bounding boxes to describe an object's position and size. However, since cells are mostly circular, this is suboptimal. We replace RetinaNet's anchors with more suitable Circular Anchors, which cover the shape of cells more precisely. We further introduce an extension to the Non-maximum Suppression algorithm that copes with predictions that differ in size. Experiments on hematopoietic cells in bone marrow images show that these methods reduce the number of false positive predictions and increase detection accuracy.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1538693305</identifier><identifier>EISBN: 9781538693308</identifier><identifier>DOI: 10.1109/ISBI45749.2020.9098398</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bone Marrow ; Cell Detection ; RetinaNet</subject><ispartof>2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020, p.249-253</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9098398$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9098398$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Grabel, Philipp</creatorcontrib><creatorcontrib>Ozkan, Ozcan</creatorcontrib><creatorcontrib>Crysandt, Martina</creatorcontrib><creatorcontrib>Herwartz, Reinhild</creatorcontrib><creatorcontrib>Baumann, Melanie</creatorcontrib><creatorcontrib>Klinkhammer, Barbara M.</creatorcontrib><creatorcontrib>Boor, Peter</creatorcontrib><creatorcontrib>Brummendorf, Tim H.</creatorcontrib><creatorcontrib>Merhof, Dorit</creatorcontrib><title>Circular Anchors for the Detection of Hematopoietic Cells Using Retinanet</title><title>2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>Analysis of the blood cell distribution in bone marrow is necessary for a detailed diagnosis of many hematopoietic diseases, such as leukemia. While this task is performed manually on microscope images in clinical routine, automating it could improve reliability and objectivity. Cell detection tasks in medical imaging have successfully been solved using deep learning, in particular with RetinaNet, a powerful network architecture that yields good detection results in this scenario. It utilizes axis-parallel, rectangular bounding boxes to describe an object's position and size. However, since cells are mostly circular, this is suboptimal. We replace RetinaNet's anchors with more suitable Circular Anchors, which cover the shape of cells more precisely. We further introduce an extension to the Non-maximum Suppression algorithm that copes with predictions that differ in size. Experiments on hematopoietic cells in bone marrow images show that these methods reduce the number of false positive predictions and increase detection accuracy.</description><subject>Bone Marrow</subject><subject>Cell Detection</subject><subject>RetinaNet</subject><issn>1945-8452</issn><isbn>1538693305</isbn><isbn>9781538693308</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEURqMgWGufQJC8wIw3fzPJso7WDhQEteuSxBsbmU7KJC58ewv22xw4iwMfIfcMasbAPPTvj71UrTQ1Bw61AaOF0RfkhimhGyMEqEsyY0aqSkvFr8ki5284rZVSgJyRvouT_xnsRJej36cp05AmWvZIn7CgLzGNNAW6xoMt6Zgiluhph8OQ6TbH8Yu-ncxoRyy35CrYIePizDnZrp4_unW1eX3pu-WmihxEqaRyzmjtvJTKAwjk4ENrlWINa4MG03KOwXlmrcKWMSY_nZLacNcAM16JObn770ZE3B2neLDT7-78XPwBymFNAg</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Grabel, Philipp</creator><creator>Ozkan, Ozcan</creator><creator>Crysandt, Martina</creator><creator>Herwartz, Reinhild</creator><creator>Baumann, Melanie</creator><creator>Klinkhammer, Barbara M.</creator><creator>Boor, Peter</creator><creator>Brummendorf, Tim H.</creator><creator>Merhof, Dorit</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202004</creationdate><title>Circular Anchors for the Detection of Hematopoietic Cells Using Retinanet</title><author>Grabel, Philipp ; Ozkan, Ozcan ; Crysandt, Martina ; Herwartz, Reinhild ; Baumann, Melanie ; Klinkhammer, Barbara M. ; Boor, Peter ; Brummendorf, Tim H. ; Merhof, Dorit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-45bb988bc445c003e20cf7a551617f809722efbc1aa5e71114db54892b6019c53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bone Marrow</topic><topic>Cell Detection</topic><topic>RetinaNet</topic><toplevel>online_resources</toplevel><creatorcontrib>Grabel, Philipp</creatorcontrib><creatorcontrib>Ozkan, Ozcan</creatorcontrib><creatorcontrib>Crysandt, Martina</creatorcontrib><creatorcontrib>Herwartz, Reinhild</creatorcontrib><creatorcontrib>Baumann, Melanie</creatorcontrib><creatorcontrib>Klinkhammer, Barbara M.</creatorcontrib><creatorcontrib>Boor, Peter</creatorcontrib><creatorcontrib>Brummendorf, Tim H.</creatorcontrib><creatorcontrib>Merhof, Dorit</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grabel, Philipp</au><au>Ozkan, Ozcan</au><au>Crysandt, Martina</au><au>Herwartz, Reinhild</au><au>Baumann, Melanie</au><au>Klinkhammer, Barbara M.</au><au>Boor, Peter</au><au>Brummendorf, Tim H.</au><au>Merhof, Dorit</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Circular Anchors for the Detection of Hematopoietic Cells Using Retinanet</atitle><btitle>2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2020-04</date><risdate>2020</risdate><spage>249</spage><epage>253</epage><pages>249-253</pages><eissn>1945-8452</eissn><eisbn>1538693305</eisbn><eisbn>9781538693308</eisbn><abstract>Analysis of the blood cell distribution in bone marrow is necessary for a detailed diagnosis of many hematopoietic diseases, such as leukemia. While this task is performed manually on microscope images in clinical routine, automating it could improve reliability and objectivity. Cell detection tasks in medical imaging have successfully been solved using deep learning, in particular with RetinaNet, a powerful network architecture that yields good detection results in this scenario. It utilizes axis-parallel, rectangular bounding boxes to describe an object's position and size. However, since cells are mostly circular, this is suboptimal. We replace RetinaNet's anchors with more suitable Circular Anchors, which cover the shape of cells more precisely. We further introduce an extension to the Non-maximum Suppression algorithm that copes with predictions that differ in size. Experiments on hematopoietic cells in bone marrow images show that these methods reduce the number of false positive predictions and increase detection accuracy.</abstract><pub>IEEE</pub><doi>10.1109/ISBI45749.2020.9098398</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1945-8452
ispartof 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020, p.249-253
issn 1945-8452
language eng
recordid cdi_ieee_primary_9098398
source IEEE Xplore All Conference Series
subjects Bone Marrow
Cell Detection
RetinaNet
title Circular Anchors for the Detection of Hematopoietic Cells Using Retinanet
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T15%3A56%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Circular%20Anchors%20for%20the%20Detection%20of%20Hematopoietic%20Cells%20Using%20Retinanet&rft.btitle=2020%20IEEE%2017th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Grabel,%20Philipp&rft.date=2020-04&rft.spage=249&rft.epage=253&rft.pages=249-253&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI45749.2020.9098398&rft.eisbn=1538693305&rft.eisbn_list=9781538693308&rft_dat=%3Cieee_CHZPO%3E9098398%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-45bb988bc445c003e20cf7a551617f809722efbc1aa5e71114db54892b6019c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9098398&rfr_iscdi=true