Loading…
Circular Anchors for the Detection of Hematopoietic Cells Using Retinanet
Analysis of the blood cell distribution in bone marrow is necessary for a detailed diagnosis of many hematopoietic diseases, such as leukemia. While this task is performed manually on microscope images in clinical routine, automating it could improve reliability and objectivity. Cell detection tasks...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 253 |
container_issue | |
container_start_page | 249 |
container_title | |
container_volume | |
creator | Grabel, Philipp Ozkan, Ozcan Crysandt, Martina Herwartz, Reinhild Baumann, Melanie Klinkhammer, Barbara M. Boor, Peter Brummendorf, Tim H. Merhof, Dorit |
description | Analysis of the blood cell distribution in bone marrow is necessary for a detailed diagnosis of many hematopoietic diseases, such as leukemia. While this task is performed manually on microscope images in clinical routine, automating it could improve reliability and objectivity. Cell detection tasks in medical imaging have successfully been solved using deep learning, in particular with RetinaNet, a powerful network architecture that yields good detection results in this scenario. It utilizes axis-parallel, rectangular bounding boxes to describe an object's position and size. However, since cells are mostly circular, this is suboptimal. We replace RetinaNet's anchors with more suitable Circular Anchors, which cover the shape of cells more precisely. We further introduce an extension to the Non-maximum Suppression algorithm that copes with predictions that differ in size. Experiments on hematopoietic cells in bone marrow images show that these methods reduce the number of false positive predictions and increase detection accuracy. |
doi_str_mv | 10.1109/ISBI45749.2020.9098398 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9098398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9098398</ieee_id><sourcerecordid>9098398</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-45bb988bc445c003e20cf7a551617f809722efbc1aa5e71114db54892b6019c53</originalsourceid><addsrcrecordid>eNotj81KAzEURqMgWGufQJC8wIw3fzPJso7WDhQEteuSxBsbmU7KJC58ewv22xw4iwMfIfcMasbAPPTvj71UrTQ1Bw61AaOF0RfkhimhGyMEqEsyY0aqSkvFr8ki5284rZVSgJyRvouT_xnsRJej36cp05AmWvZIn7CgLzGNNAW6xoMt6Zgiluhph8OQ6TbH8Yu-ncxoRyy35CrYIePizDnZrp4_unW1eX3pu-WmihxEqaRyzmjtvJTKAwjk4ENrlWINa4MG03KOwXlmrcKWMSY_nZLacNcAM16JObn770ZE3B2neLDT7-78XPwBymFNAg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Circular Anchors for the Detection of Hematopoietic Cells Using Retinanet</title><source>IEEE Xplore All Conference Series</source><creator>Grabel, Philipp ; Ozkan, Ozcan ; Crysandt, Martina ; Herwartz, Reinhild ; Baumann, Melanie ; Klinkhammer, Barbara M. ; Boor, Peter ; Brummendorf, Tim H. ; Merhof, Dorit</creator><creatorcontrib>Grabel, Philipp ; Ozkan, Ozcan ; Crysandt, Martina ; Herwartz, Reinhild ; Baumann, Melanie ; Klinkhammer, Barbara M. ; Boor, Peter ; Brummendorf, Tim H. ; Merhof, Dorit</creatorcontrib><description>Analysis of the blood cell distribution in bone marrow is necessary for a detailed diagnosis of many hematopoietic diseases, such as leukemia. While this task is performed manually on microscope images in clinical routine, automating it could improve reliability and objectivity. Cell detection tasks in medical imaging have successfully been solved using deep learning, in particular with RetinaNet, a powerful network architecture that yields good detection results in this scenario. It utilizes axis-parallel, rectangular bounding boxes to describe an object's position and size. However, since cells are mostly circular, this is suboptimal. We replace RetinaNet's anchors with more suitable Circular Anchors, which cover the shape of cells more precisely. We further introduce an extension to the Non-maximum Suppression algorithm that copes with predictions that differ in size. Experiments on hematopoietic cells in bone marrow images show that these methods reduce the number of false positive predictions and increase detection accuracy.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1538693305</identifier><identifier>EISBN: 9781538693308</identifier><identifier>DOI: 10.1109/ISBI45749.2020.9098398</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bone Marrow ; Cell Detection ; RetinaNet</subject><ispartof>2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020, p.249-253</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9098398$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9098398$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Grabel, Philipp</creatorcontrib><creatorcontrib>Ozkan, Ozcan</creatorcontrib><creatorcontrib>Crysandt, Martina</creatorcontrib><creatorcontrib>Herwartz, Reinhild</creatorcontrib><creatorcontrib>Baumann, Melanie</creatorcontrib><creatorcontrib>Klinkhammer, Barbara M.</creatorcontrib><creatorcontrib>Boor, Peter</creatorcontrib><creatorcontrib>Brummendorf, Tim H.</creatorcontrib><creatorcontrib>Merhof, Dorit</creatorcontrib><title>Circular Anchors for the Detection of Hematopoietic Cells Using Retinanet</title><title>2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>Analysis of the blood cell distribution in bone marrow is necessary for a detailed diagnosis of many hematopoietic diseases, such as leukemia. While this task is performed manually on microscope images in clinical routine, automating it could improve reliability and objectivity. Cell detection tasks in medical imaging have successfully been solved using deep learning, in particular with RetinaNet, a powerful network architecture that yields good detection results in this scenario. It utilizes axis-parallel, rectangular bounding boxes to describe an object's position and size. However, since cells are mostly circular, this is suboptimal. We replace RetinaNet's anchors with more suitable Circular Anchors, which cover the shape of cells more precisely. We further introduce an extension to the Non-maximum Suppression algorithm that copes with predictions that differ in size. Experiments on hematopoietic cells in bone marrow images show that these methods reduce the number of false positive predictions and increase detection accuracy.</description><subject>Bone Marrow</subject><subject>Cell Detection</subject><subject>RetinaNet</subject><issn>1945-8452</issn><isbn>1538693305</isbn><isbn>9781538693308</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEURqMgWGufQJC8wIw3fzPJso7WDhQEteuSxBsbmU7KJC58ewv22xw4iwMfIfcMasbAPPTvj71UrTQ1Bw61AaOF0RfkhimhGyMEqEsyY0aqSkvFr8ki5284rZVSgJyRvouT_xnsRJej36cp05AmWvZIn7CgLzGNNAW6xoMt6Zgiluhph8OQ6TbH8Yu-ncxoRyy35CrYIePizDnZrp4_unW1eX3pu-WmihxEqaRyzmjtvJTKAwjk4ENrlWINa4MG03KOwXlmrcKWMSY_nZLacNcAM16JObn770ZE3B2neLDT7-78XPwBymFNAg</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Grabel, Philipp</creator><creator>Ozkan, Ozcan</creator><creator>Crysandt, Martina</creator><creator>Herwartz, Reinhild</creator><creator>Baumann, Melanie</creator><creator>Klinkhammer, Barbara M.</creator><creator>Boor, Peter</creator><creator>Brummendorf, Tim H.</creator><creator>Merhof, Dorit</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202004</creationdate><title>Circular Anchors for the Detection of Hematopoietic Cells Using Retinanet</title><author>Grabel, Philipp ; Ozkan, Ozcan ; Crysandt, Martina ; Herwartz, Reinhild ; Baumann, Melanie ; Klinkhammer, Barbara M. ; Boor, Peter ; Brummendorf, Tim H. ; Merhof, Dorit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-45bb988bc445c003e20cf7a551617f809722efbc1aa5e71114db54892b6019c53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bone Marrow</topic><topic>Cell Detection</topic><topic>RetinaNet</topic><toplevel>online_resources</toplevel><creatorcontrib>Grabel, Philipp</creatorcontrib><creatorcontrib>Ozkan, Ozcan</creatorcontrib><creatorcontrib>Crysandt, Martina</creatorcontrib><creatorcontrib>Herwartz, Reinhild</creatorcontrib><creatorcontrib>Baumann, Melanie</creatorcontrib><creatorcontrib>Klinkhammer, Barbara M.</creatorcontrib><creatorcontrib>Boor, Peter</creatorcontrib><creatorcontrib>Brummendorf, Tim H.</creatorcontrib><creatorcontrib>Merhof, Dorit</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grabel, Philipp</au><au>Ozkan, Ozcan</au><au>Crysandt, Martina</au><au>Herwartz, Reinhild</au><au>Baumann, Melanie</au><au>Klinkhammer, Barbara M.</au><au>Boor, Peter</au><au>Brummendorf, Tim H.</au><au>Merhof, Dorit</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Circular Anchors for the Detection of Hematopoietic Cells Using Retinanet</atitle><btitle>2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2020-04</date><risdate>2020</risdate><spage>249</spage><epage>253</epage><pages>249-253</pages><eissn>1945-8452</eissn><eisbn>1538693305</eisbn><eisbn>9781538693308</eisbn><abstract>Analysis of the blood cell distribution in bone marrow is necessary for a detailed diagnosis of many hematopoietic diseases, such as leukemia. While this task is performed manually on microscope images in clinical routine, automating it could improve reliability and objectivity. Cell detection tasks in medical imaging have successfully been solved using deep learning, in particular with RetinaNet, a powerful network architecture that yields good detection results in this scenario. It utilizes axis-parallel, rectangular bounding boxes to describe an object's position and size. However, since cells are mostly circular, this is suboptimal. We replace RetinaNet's anchors with more suitable Circular Anchors, which cover the shape of cells more precisely. We further introduce an extension to the Non-maximum Suppression algorithm that copes with predictions that differ in size. Experiments on hematopoietic cells in bone marrow images show that these methods reduce the number of false positive predictions and increase detection accuracy.</abstract><pub>IEEE</pub><doi>10.1109/ISBI45749.2020.9098398</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1945-8452 |
ispartof | 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020, p.249-253 |
issn | 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_9098398 |
source | IEEE Xplore All Conference Series |
subjects | Bone Marrow Cell Detection RetinaNet |
title | Circular Anchors for the Detection of Hematopoietic Cells Using Retinanet |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T15%3A56%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Circular%20Anchors%20for%20the%20Detection%20of%20Hematopoietic%20Cells%20Using%20Retinanet&rft.btitle=2020%20IEEE%2017th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Grabel,%20Philipp&rft.date=2020-04&rft.spage=249&rft.epage=253&rft.pages=249-253&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI45749.2020.9098398&rft.eisbn=1538693305&rft.eisbn_list=9781538693308&rft_dat=%3Cieee_CHZPO%3E9098398%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-45bb988bc445c003e20cf7a551617f809722efbc1aa5e71114db54892b6019c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9098398&rfr_iscdi=true |