Loading…

Scaling Dnn-Based Video Analysis By Coarse-Grained And Fine-Grained Parallelism

Deep neural networks have been widely used in video analysis applications such as automatic metadata generation, action recognition, and video summarization. A fundamental module in the pipeline of such DNN-based applications is feature extraction. However, extracting features for videos is a major...

Full description

Saved in:
Bibliographic Details
Main Authors: Sinthong, Phanwadee, Mahadik, Kanak, Sarkhel, Somdeb, Mitra, Saayan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Sinthong, Phanwadee
Mahadik, Kanak
Sarkhel, Somdeb
Mitra, Saayan
description Deep neural networks have been widely used in video analysis applications such as automatic metadata generation, action recognition, and video summarization. A fundamental module in the pipeline of such DNN-based applications is feature extraction. However, extracting features for videos is a major bottleneck since it is performed on every frame of each video sequentially. In addition, the long training time of these complex networks also hinders their usability. In this work, we identify fine-grained and coarse-grained parallelism techniques to speed up vital components in video analysis applications through inter-frame and intra-video parallelism. We demonstrate these techniques on the feature extraction and summarization modules. We leverage frame-level parallelism in feature extraction and intra-video parallelism to speed up video summarization and implement them in a distributed environment using Hadoop Map-Reduce framework to get a speed up of 2.67X on a 4-node setup. Furthermore, we show in our results that our approach has similar accuracy to the sequential applications.
doi_str_mv 10.1109/ICME46284.2020.9102768
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9102768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9102768</ieee_id><sourcerecordid>9102768</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-d0fcd657d07bf76cd301f6b222459c5567ac558d1590ab1f0878977f1bbc675b3</originalsourceid><addsrcrecordid>eNo9T9tKAzEUjIJgrf0CQfIDWc9JNrfH7drWQqWCF3wr2U0ike1WNr7077tgcR5mhmEYGELuEQpEsA_r-nlRKm7KggOHwiJwrcwFuUHNDaIQaC7JBG0pmTbm85rMcv6GEbosLYgJ2b62rkv9F33sezZ3OXj6kXw40Kp33TGnTOdHWh_ckANbDS71Y6HqPV2O7j94cYPrutClvL8lV9F1OczOOiXvy8Vb_cQ229W6rjYscRC_zENsvZLag26iVq0XgFE1nPNS2lZKpd3IxqO04BqMYLSxWkdsmlZp2YgpufvbTSGE3c-Q9m447s7_xQlKq06O</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Scaling Dnn-Based Video Analysis By Coarse-Grained And Fine-Grained Parallelism</title><source>IEEE Xplore All Conference Series</source><creator>Sinthong, Phanwadee ; Mahadik, Kanak ; Sarkhel, Somdeb ; Mitra, Saayan</creator><creatorcontrib>Sinthong, Phanwadee ; Mahadik, Kanak ; Sarkhel, Somdeb ; Mitra, Saayan</creatorcontrib><description>Deep neural networks have been widely used in video analysis applications such as automatic metadata generation, action recognition, and video summarization. A fundamental module in the pipeline of such DNN-based applications is feature extraction. However, extracting features for videos is a major bottleneck since it is performed on every frame of each video sequentially. In addition, the long training time of these complex networks also hinders their usability. In this work, we identify fine-grained and coarse-grained parallelism techniques to speed up vital components in video analysis applications through inter-frame and intra-video parallelism. We demonstrate these techniques on the feature extraction and summarization modules. We leverage frame-level parallelism in feature extraction and intra-video parallelism to speed up video summarization and implement them in a distributed environment using Hadoop Map-Reduce framework to get a speed up of 2.67X on a 4-node setup. Furthermore, we show in our results that our approach has similar accuracy to the sequential applications.</description><identifier>EISSN: 1945-788X</identifier><identifier>EISBN: 1728113318</identifier><identifier>EISBN: 9781728113319</identifier><identifier>DOI: 10.1109/ICME46284.2020.9102768</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; data-parallelism ; DNN ; Feature extraction ; Generators ; Graphics processing units ; Parallel processing ; Pipelines ; Training ; video analysis</subject><ispartof>2020 IEEE International Conference on Multimedia and Expo (ICME), 2020, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9102768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9102768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sinthong, Phanwadee</creatorcontrib><creatorcontrib>Mahadik, Kanak</creatorcontrib><creatorcontrib>Sarkhel, Somdeb</creatorcontrib><creatorcontrib>Mitra, Saayan</creatorcontrib><title>Scaling Dnn-Based Video Analysis By Coarse-Grained And Fine-Grained Parallelism</title><title>2020 IEEE International Conference on Multimedia and Expo (ICME)</title><addtitle>ICME</addtitle><description>Deep neural networks have been widely used in video analysis applications such as automatic metadata generation, action recognition, and video summarization. A fundamental module in the pipeline of such DNN-based applications is feature extraction. However, extracting features for videos is a major bottleneck since it is performed on every frame of each video sequentially. In addition, the long training time of these complex networks also hinders their usability. In this work, we identify fine-grained and coarse-grained parallelism techniques to speed up vital components in video analysis applications through inter-frame and intra-video parallelism. We demonstrate these techniques on the feature extraction and summarization modules. We leverage frame-level parallelism in feature extraction and intra-video parallelism to speed up video summarization and implement them in a distributed environment using Hadoop Map-Reduce framework to get a speed up of 2.67X on a 4-node setup. Furthermore, we show in our results that our approach has similar accuracy to the sequential applications.</description><subject>Aggregates</subject><subject>data-parallelism</subject><subject>DNN</subject><subject>Feature extraction</subject><subject>Generators</subject><subject>Graphics processing units</subject><subject>Parallel processing</subject><subject>Pipelines</subject><subject>Training</subject><subject>video analysis</subject><issn>1945-788X</issn><isbn>1728113318</isbn><isbn>9781728113319</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9T9tKAzEUjIJgrf0CQfIDWc9JNrfH7drWQqWCF3wr2U0ike1WNr7077tgcR5mhmEYGELuEQpEsA_r-nlRKm7KggOHwiJwrcwFuUHNDaIQaC7JBG0pmTbm85rMcv6GEbosLYgJ2b62rkv9F33sezZ3OXj6kXw40Kp33TGnTOdHWh_ckANbDS71Y6HqPV2O7j94cYPrutClvL8lV9F1OczOOiXvy8Vb_cQ229W6rjYscRC_zENsvZLag26iVq0XgFE1nPNS2lZKpd3IxqO04BqMYLSxWkdsmlZp2YgpufvbTSGE3c-Q9m447s7_xQlKq06O</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Sinthong, Phanwadee</creator><creator>Mahadik, Kanak</creator><creator>Sarkhel, Somdeb</creator><creator>Mitra, Saayan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202007</creationdate><title>Scaling Dnn-Based Video Analysis By Coarse-Grained And Fine-Grained Parallelism</title><author>Sinthong, Phanwadee ; Mahadik, Kanak ; Sarkhel, Somdeb ; Mitra, Saayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-d0fcd657d07bf76cd301f6b222459c5567ac558d1590ab1f0878977f1bbc675b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregates</topic><topic>data-parallelism</topic><topic>DNN</topic><topic>Feature extraction</topic><topic>Generators</topic><topic>Graphics processing units</topic><topic>Parallel processing</topic><topic>Pipelines</topic><topic>Training</topic><topic>video analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Sinthong, Phanwadee</creatorcontrib><creatorcontrib>Mahadik, Kanak</creatorcontrib><creatorcontrib>Sarkhel, Somdeb</creatorcontrib><creatorcontrib>Mitra, Saayan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sinthong, Phanwadee</au><au>Mahadik, Kanak</au><au>Sarkhel, Somdeb</au><au>Mitra, Saayan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Scaling Dnn-Based Video Analysis By Coarse-Grained And Fine-Grained Parallelism</atitle><btitle>2020 IEEE International Conference on Multimedia and Expo (ICME)</btitle><stitle>ICME</stitle><date>2020-07</date><risdate>2020</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>1945-788X</eissn><eisbn>1728113318</eisbn><eisbn>9781728113319</eisbn><abstract>Deep neural networks have been widely used in video analysis applications such as automatic metadata generation, action recognition, and video summarization. A fundamental module in the pipeline of such DNN-based applications is feature extraction. However, extracting features for videos is a major bottleneck since it is performed on every frame of each video sequentially. In addition, the long training time of these complex networks also hinders their usability. In this work, we identify fine-grained and coarse-grained parallelism techniques to speed up vital components in video analysis applications through inter-frame and intra-video parallelism. We demonstrate these techniques on the feature extraction and summarization modules. We leverage frame-level parallelism in feature extraction and intra-video parallelism to speed up video summarization and implement them in a distributed environment using Hadoop Map-Reduce framework to get a speed up of 2.67X on a 4-node setup. Furthermore, we show in our results that our approach has similar accuracy to the sequential applications.</abstract><pub>IEEE</pub><doi>10.1109/ICME46284.2020.9102768</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1945-788X
ispartof 2020 IEEE International Conference on Multimedia and Expo (ICME), 2020, p.1-6
issn 1945-788X
language eng
recordid cdi_ieee_primary_9102768
source IEEE Xplore All Conference Series
subjects Aggregates
data-parallelism
DNN
Feature extraction
Generators
Graphics processing units
Parallel processing
Pipelines
Training
video analysis
title Scaling Dnn-Based Video Analysis By Coarse-Grained And Fine-Grained Parallelism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Scaling%20Dnn-Based%20Video%20Analysis%20By%20Coarse-Grained%20And%20Fine-Grained%20Parallelism&rft.btitle=2020%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo%20(ICME)&rft.au=Sinthong,%20Phanwadee&rft.date=2020-07&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=1945-788X&rft_id=info:doi/10.1109/ICME46284.2020.9102768&rft.eisbn=1728113318&rft.eisbn_list=9781728113319&rft_dat=%3Cieee_CHZPO%3E9102768%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-d0fcd657d07bf76cd301f6b222459c5567ac558d1590ab1f0878977f1bbc675b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9102768&rfr_iscdi=true