Loading…

Glad: Global And Local Anomaly Detection

Detecting anomaly in images is challenging due to the high dimension nature of image data. While the previous learning-based anomaly detection approaches can detect a particular type of anomaly precisely, they often fail in detecting multiple types of abnormal samples simultaneously.We identify the...

Full description

Saved in:
Bibliographic Details
Main Authors: Nie, Lihai, Zhao, Laiping, Li, Keqiu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Nie, Lihai
Zhao, Laiping
Li, Keqiu
description Detecting anomaly in images is challenging due to the high dimension nature of image data. While the previous learning-based anomaly detection approaches can detect a particular type of anomaly precisely, they often fail in detecting multiple types of abnormal samples simultaneously.We identify the two specific types of anomalies that can be precisely detected by either compress-based or reconstruction-based anomaly detection approaches, named global anomaly and local anomaly. We then propose Glad, an anomaly detector that can precisely detect both of them at the same time. Glad adopts a joint approach combining the density estimation and auto-encoder. Firstly, it designs a multimodal density estimation model to derive the latent representation probability for identifying the global anomaly. Then, it uses structural similarity to measure the reconstruction loss for characterizing local anomaly. Finally, both anomalies can be diagnosed according to the joint density of latent representation and reconstruction loss. Experimental results on public benchmark datasets demonstrate that Glad outperforms the state-of-the-art methods significantly.
doi_str_mv 10.1109/ICME46284.2020.9102818
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9102818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9102818</ieee_id><sourcerecordid>9102818</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-6415898060a016ce909b5a9e1a8761a27484ccb46dba157a42afe700039fff903</originalsourceid><addsrcrecordid>eNotj8FKw0AURUdBsNZ-gSBZukl8b2Yy88ZdiTUWIm4U3JWXyQxEpo002fTvDdq7uWd1OVeIe4QCEdzjtnrbaCNJFxIkFA5BEtKFuEE7AyqFdCkW6HSZW6Kva7Eax2-YY7V2oBbioU7cPWV1GlpO2frQZc3g_2jYczplz2EKfuqHw624ipzGsDr3Uny-bD6q17x5r7fVusl7CWrKjcaSHIEBBjQ-OHBtyS4gkzXI0mrS3rfadC1jaVlLjsHOQsrFGGelpbj73-1DCLufY7_n42l3PqZ-ATJ5P-Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Glad: Global And Local Anomaly Detection</title><source>IEEE Xplore All Conference Series</source><creator>Nie, Lihai ; Zhao, Laiping ; Li, Keqiu</creator><creatorcontrib>Nie, Lihai ; Zhao, Laiping ; Li, Keqiu</creatorcontrib><description>Detecting anomaly in images is challenging due to the high dimension nature of image data. While the previous learning-based anomaly detection approaches can detect a particular type of anomaly precisely, they often fail in detecting multiple types of abnormal samples simultaneously.We identify the two specific types of anomalies that can be precisely detected by either compress-based or reconstruction-based anomaly detection approaches, named global anomaly and local anomaly. We then propose Glad, an anomaly detector that can precisely detect both of them at the same time. Glad adopts a joint approach combining the density estimation and auto-encoder. Firstly, it designs a multimodal density estimation model to derive the latent representation probability for identifying the global anomaly. Then, it uses structural similarity to measure the reconstruction loss for characterizing local anomaly. Finally, both anomalies can be diagnosed according to the joint density of latent representation and reconstruction loss. Experimental results on public benchmark datasets demonstrate that Glad outperforms the state-of-the-art methods significantly.</description><identifier>EISSN: 1945-788X</identifier><identifier>EISBN: 1728113318</identifier><identifier>EISBN: 9781728113319</identifier><identifier>DOI: 10.1109/ICME46284.2020.9102818</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anomaly detection ; Convolution ; Decoding ; deep learning ; density estimation ; Estimation ; Image reconstruction ; Neural networks ; Training</subject><ispartof>2020 IEEE International Conference on Multimedia and Expo (ICME), 2020, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9102818$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9102818$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nie, Lihai</creatorcontrib><creatorcontrib>Zhao, Laiping</creatorcontrib><creatorcontrib>Li, Keqiu</creatorcontrib><title>Glad: Global And Local Anomaly Detection</title><title>2020 IEEE International Conference on Multimedia and Expo (ICME)</title><addtitle>ICME</addtitle><description>Detecting anomaly in images is challenging due to the high dimension nature of image data. While the previous learning-based anomaly detection approaches can detect a particular type of anomaly precisely, they often fail in detecting multiple types of abnormal samples simultaneously.We identify the two specific types of anomalies that can be precisely detected by either compress-based or reconstruction-based anomaly detection approaches, named global anomaly and local anomaly. We then propose Glad, an anomaly detector that can precisely detect both of them at the same time. Glad adopts a joint approach combining the density estimation and auto-encoder. Firstly, it designs a multimodal density estimation model to derive the latent representation probability for identifying the global anomaly. Then, it uses structural similarity to measure the reconstruction loss for characterizing local anomaly. Finally, both anomalies can be diagnosed according to the joint density of latent representation and reconstruction loss. Experimental results on public benchmark datasets demonstrate that Glad outperforms the state-of-the-art methods significantly.</description><subject>Anomaly detection</subject><subject>Convolution</subject><subject>Decoding</subject><subject>deep learning</subject><subject>density estimation</subject><subject>Estimation</subject><subject>Image reconstruction</subject><subject>Neural networks</subject><subject>Training</subject><issn>1945-788X</issn><isbn>1728113318</isbn><isbn>9781728113319</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8FKw0AURUdBsNZ-gSBZukl8b2Yy88ZdiTUWIm4U3JWXyQxEpo002fTvDdq7uWd1OVeIe4QCEdzjtnrbaCNJFxIkFA5BEtKFuEE7AyqFdCkW6HSZW6Kva7Eax2-YY7V2oBbioU7cPWV1GlpO2frQZc3g_2jYczplz2EKfuqHw624ipzGsDr3Uny-bD6q17x5r7fVusl7CWrKjcaSHIEBBjQ-OHBtyS4gkzXI0mrS3rfadC1jaVlLjsHOQsrFGGelpbj73-1DCLufY7_n42l3PqZ-ATJ5P-Y</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Nie, Lihai</creator><creator>Zhao, Laiping</creator><creator>Li, Keqiu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202007</creationdate><title>Glad: Global And Local Anomaly Detection</title><author>Nie, Lihai ; Zhao, Laiping ; Li, Keqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-6415898060a016ce909b5a9e1a8761a27484ccb46dba157a42afe700039fff903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomaly detection</topic><topic>Convolution</topic><topic>Decoding</topic><topic>deep learning</topic><topic>density estimation</topic><topic>Estimation</topic><topic>Image reconstruction</topic><topic>Neural networks</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Nie, Lihai</creatorcontrib><creatorcontrib>Zhao, Laiping</creatorcontrib><creatorcontrib>Li, Keqiu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nie, Lihai</au><au>Zhao, Laiping</au><au>Li, Keqiu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Glad: Global And Local Anomaly Detection</atitle><btitle>2020 IEEE International Conference on Multimedia and Expo (ICME)</btitle><stitle>ICME</stitle><date>2020-07</date><risdate>2020</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>1945-788X</eissn><eisbn>1728113318</eisbn><eisbn>9781728113319</eisbn><abstract>Detecting anomaly in images is challenging due to the high dimension nature of image data. While the previous learning-based anomaly detection approaches can detect a particular type of anomaly precisely, they often fail in detecting multiple types of abnormal samples simultaneously.We identify the two specific types of anomalies that can be precisely detected by either compress-based or reconstruction-based anomaly detection approaches, named global anomaly and local anomaly. We then propose Glad, an anomaly detector that can precisely detect both of them at the same time. Glad adopts a joint approach combining the density estimation and auto-encoder. Firstly, it designs a multimodal density estimation model to derive the latent representation probability for identifying the global anomaly. Then, it uses structural similarity to measure the reconstruction loss for characterizing local anomaly. Finally, both anomalies can be diagnosed according to the joint density of latent representation and reconstruction loss. Experimental results on public benchmark datasets demonstrate that Glad outperforms the state-of-the-art methods significantly.</abstract><pub>IEEE</pub><doi>10.1109/ICME46284.2020.9102818</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1945-788X
ispartof 2020 IEEE International Conference on Multimedia and Expo (ICME), 2020, p.1-6
issn 1945-788X
language eng
recordid cdi_ieee_primary_9102818
source IEEE Xplore All Conference Series
subjects Anomaly detection
Convolution
Decoding
deep learning
density estimation
Estimation
Image reconstruction
Neural networks
Training
title Glad: Global And Local Anomaly Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A16%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Glad:%20Global%20And%20Local%20Anomaly%20Detection&rft.btitle=2020%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo%20(ICME)&rft.au=Nie,%20Lihai&rft.date=2020-07&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=1945-788X&rft_id=info:doi/10.1109/ICME46284.2020.9102818&rft.eisbn=1728113318&rft.eisbn_list=9781728113319&rft_dat=%3Cieee_CHZPO%3E9102818%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-6415898060a016ce909b5a9e1a8761a27484ccb46dba157a42afe700039fff903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9102818&rfr_iscdi=true