Loading…
Glad: Global And Local Anomaly Detection
Detecting anomaly in images is challenging due to the high dimension nature of image data. While the previous learning-based anomaly detection approaches can detect a particular type of anomaly precisely, they often fail in detecting multiple types of abnormal samples simultaneously.We identify the...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Nie, Lihai Zhao, Laiping Li, Keqiu |
description | Detecting anomaly in images is challenging due to the high dimension nature of image data. While the previous learning-based anomaly detection approaches can detect a particular type of anomaly precisely, they often fail in detecting multiple types of abnormal samples simultaneously.We identify the two specific types of anomalies that can be precisely detected by either compress-based or reconstruction-based anomaly detection approaches, named global anomaly and local anomaly. We then propose Glad, an anomaly detector that can precisely detect both of them at the same time. Glad adopts a joint approach combining the density estimation and auto-encoder. Firstly, it designs a multimodal density estimation model to derive the latent representation probability for identifying the global anomaly. Then, it uses structural similarity to measure the reconstruction loss for characterizing local anomaly. Finally, both anomalies can be diagnosed according to the joint density of latent representation and reconstruction loss. Experimental results on public benchmark datasets demonstrate that Glad outperforms the state-of-the-art methods significantly. |
doi_str_mv | 10.1109/ICME46284.2020.9102818 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9102818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9102818</ieee_id><sourcerecordid>9102818</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-6415898060a016ce909b5a9e1a8761a27484ccb46dba157a42afe700039fff903</originalsourceid><addsrcrecordid>eNotj8FKw0AURUdBsNZ-gSBZukl8b2Yy88ZdiTUWIm4U3JWXyQxEpo002fTvDdq7uWd1OVeIe4QCEdzjtnrbaCNJFxIkFA5BEtKFuEE7AyqFdCkW6HSZW6Kva7Eax2-YY7V2oBbioU7cPWV1GlpO2frQZc3g_2jYczplz2EKfuqHw624ipzGsDr3Uny-bD6q17x5r7fVusl7CWrKjcaSHIEBBjQ-OHBtyS4gkzXI0mrS3rfadC1jaVlLjsHOQsrFGGelpbj73-1DCLufY7_n42l3PqZ-ATJ5P-Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Glad: Global And Local Anomaly Detection</title><source>IEEE Xplore All Conference Series</source><creator>Nie, Lihai ; Zhao, Laiping ; Li, Keqiu</creator><creatorcontrib>Nie, Lihai ; Zhao, Laiping ; Li, Keqiu</creatorcontrib><description>Detecting anomaly in images is challenging due to the high dimension nature of image data. While the previous learning-based anomaly detection approaches can detect a particular type of anomaly precisely, they often fail in detecting multiple types of abnormal samples simultaneously.We identify the two specific types of anomalies that can be precisely detected by either compress-based or reconstruction-based anomaly detection approaches, named global anomaly and local anomaly. We then propose Glad, an anomaly detector that can precisely detect both of them at the same time. Glad adopts a joint approach combining the density estimation and auto-encoder. Firstly, it designs a multimodal density estimation model to derive the latent representation probability for identifying the global anomaly. Then, it uses structural similarity to measure the reconstruction loss for characterizing local anomaly. Finally, both anomalies can be diagnosed according to the joint density of latent representation and reconstruction loss. Experimental results on public benchmark datasets demonstrate that Glad outperforms the state-of-the-art methods significantly.</description><identifier>EISSN: 1945-788X</identifier><identifier>EISBN: 1728113318</identifier><identifier>EISBN: 9781728113319</identifier><identifier>DOI: 10.1109/ICME46284.2020.9102818</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anomaly detection ; Convolution ; Decoding ; deep learning ; density estimation ; Estimation ; Image reconstruction ; Neural networks ; Training</subject><ispartof>2020 IEEE International Conference on Multimedia and Expo (ICME), 2020, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9102818$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9102818$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nie, Lihai</creatorcontrib><creatorcontrib>Zhao, Laiping</creatorcontrib><creatorcontrib>Li, Keqiu</creatorcontrib><title>Glad: Global And Local Anomaly Detection</title><title>2020 IEEE International Conference on Multimedia and Expo (ICME)</title><addtitle>ICME</addtitle><description>Detecting anomaly in images is challenging due to the high dimension nature of image data. While the previous learning-based anomaly detection approaches can detect a particular type of anomaly precisely, they often fail in detecting multiple types of abnormal samples simultaneously.We identify the two specific types of anomalies that can be precisely detected by either compress-based or reconstruction-based anomaly detection approaches, named global anomaly and local anomaly. We then propose Glad, an anomaly detector that can precisely detect both of them at the same time. Glad adopts a joint approach combining the density estimation and auto-encoder. Firstly, it designs a multimodal density estimation model to derive the latent representation probability for identifying the global anomaly. Then, it uses structural similarity to measure the reconstruction loss for characterizing local anomaly. Finally, both anomalies can be diagnosed according to the joint density of latent representation and reconstruction loss. Experimental results on public benchmark datasets demonstrate that Glad outperforms the state-of-the-art methods significantly.</description><subject>Anomaly detection</subject><subject>Convolution</subject><subject>Decoding</subject><subject>deep learning</subject><subject>density estimation</subject><subject>Estimation</subject><subject>Image reconstruction</subject><subject>Neural networks</subject><subject>Training</subject><issn>1945-788X</issn><isbn>1728113318</isbn><isbn>9781728113319</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8FKw0AURUdBsNZ-gSBZukl8b2Yy88ZdiTUWIm4U3JWXyQxEpo002fTvDdq7uWd1OVeIe4QCEdzjtnrbaCNJFxIkFA5BEtKFuEE7AyqFdCkW6HSZW6Kva7Eax2-YY7V2oBbioU7cPWV1GlpO2frQZc3g_2jYczplz2EKfuqHw624ipzGsDr3Uny-bD6q17x5r7fVusl7CWrKjcaSHIEBBjQ-OHBtyS4gkzXI0mrS3rfadC1jaVlLjsHOQsrFGGelpbj73-1DCLufY7_n42l3PqZ-ATJ5P-Y</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Nie, Lihai</creator><creator>Zhao, Laiping</creator><creator>Li, Keqiu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202007</creationdate><title>Glad: Global And Local Anomaly Detection</title><author>Nie, Lihai ; Zhao, Laiping ; Li, Keqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-6415898060a016ce909b5a9e1a8761a27484ccb46dba157a42afe700039fff903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomaly detection</topic><topic>Convolution</topic><topic>Decoding</topic><topic>deep learning</topic><topic>density estimation</topic><topic>Estimation</topic><topic>Image reconstruction</topic><topic>Neural networks</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Nie, Lihai</creatorcontrib><creatorcontrib>Zhao, Laiping</creatorcontrib><creatorcontrib>Li, Keqiu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nie, Lihai</au><au>Zhao, Laiping</au><au>Li, Keqiu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Glad: Global And Local Anomaly Detection</atitle><btitle>2020 IEEE International Conference on Multimedia and Expo (ICME)</btitle><stitle>ICME</stitle><date>2020-07</date><risdate>2020</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>1945-788X</eissn><eisbn>1728113318</eisbn><eisbn>9781728113319</eisbn><abstract>Detecting anomaly in images is challenging due to the high dimension nature of image data. While the previous learning-based anomaly detection approaches can detect a particular type of anomaly precisely, they often fail in detecting multiple types of abnormal samples simultaneously.We identify the two specific types of anomalies that can be precisely detected by either compress-based or reconstruction-based anomaly detection approaches, named global anomaly and local anomaly. We then propose Glad, an anomaly detector that can precisely detect both of them at the same time. Glad adopts a joint approach combining the density estimation and auto-encoder. Firstly, it designs a multimodal density estimation model to derive the latent representation probability for identifying the global anomaly. Then, it uses structural similarity to measure the reconstruction loss for characterizing local anomaly. Finally, both anomalies can be diagnosed according to the joint density of latent representation and reconstruction loss. Experimental results on public benchmark datasets demonstrate that Glad outperforms the state-of-the-art methods significantly.</abstract><pub>IEEE</pub><doi>10.1109/ICME46284.2020.9102818</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1945-788X |
ispartof | 2020 IEEE International Conference on Multimedia and Expo (ICME), 2020, p.1-6 |
issn | 1945-788X |
language | eng |
recordid | cdi_ieee_primary_9102818 |
source | IEEE Xplore All Conference Series |
subjects | Anomaly detection Convolution Decoding deep learning density estimation Estimation Image reconstruction Neural networks Training |
title | Glad: Global And Local Anomaly Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A16%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Glad:%20Global%20And%20Local%20Anomaly%20Detection&rft.btitle=2020%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo%20(ICME)&rft.au=Nie,%20Lihai&rft.date=2020-07&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=1945-788X&rft_id=info:doi/10.1109/ICME46284.2020.9102818&rft.eisbn=1728113318&rft.eisbn_list=9781728113319&rft_dat=%3Cieee_CHZPO%3E9102818%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-6415898060a016ce909b5a9e1a8761a27484ccb46dba157a42afe700039fff903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9102818&rfr_iscdi=true |