Loading…
Parametric Bootstrapping of Array Data with A Generative Adversarial Network
Since the number of independent array data snapshots is limited by the availability of real-world data, we propose a parametric bootstrap for resampling. The proposed parametric bootstrap is based on a generative adversarial network (GAN) following the generative approach to machine learning. For th...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Since the number of independent array data snapshots is limited by the availability of real-world data, we propose a parametric bootstrap for resampling. The proposed parametric bootstrap is based on a generative adversarial network (GAN) following the generative approach to machine learning. For the GAN model we chose the Wasserstein GAN with penalized norm of gradient of the critic with respect to its input (wGAN gp). The approach is demonstrated with synthetic and real-world ocean acoustic array data. |
---|---|
ISSN: | 2151-870X |
DOI: | 10.1109/SAM48682.2020.9104371 |