Loading…

Sparse Subspace Clustering with Linear Subspace-Neighborhood-Preserving Data Embedding

Data dimensionality reduction via linear embedding is a typical approach to economizing the computational cost of machine learning systems. In the context of sparse subspace clustering (SSC), this paper proposes a two-step neighbor identification scheme using linear neighborhoodpreserving embedding....

Full description

Saved in:
Bibliographic Details
Main Authors: Wu, Jwo-Yuh, Huang, Liang-Chi, Li, Wen-Hsuan, Chan, Hau-Hsiang, Liu, Chun-Hung, Gau, Rung-Hung
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Wu, Jwo-Yuh
Huang, Liang-Chi
Li, Wen-Hsuan
Chan, Hau-Hsiang
Liu, Chun-Hung
Gau, Rung-Hung
description Data dimensionality reduction via linear embedding is a typical approach to economizing the computational cost of machine learning systems. In the context of sparse subspace clustering (SSC), this paper proposes a two-step neighbor identification scheme using linear neighborhoodpreserving embedding. In the first step, a quadratically- constrained ℓ 1 -minimization algorithm is solved for acquiring the side subspace neighborhood information, whereby a linear neighborhood-preserving embedding is designed accordingly. In the second step, a LASSO sparse regression algorithm is conducted for neighbor identification using the dimensionality- reduced data. The proposed embedding design explicitly takes into account the subspace neighborhood structure of the given data set. Computer simulations using real human face data show that the proposed embedding not only outperforms other existing dimensionality-reduction schemes but also improves the global data clustering accuracy when compared to the baseline solution without data compression.
doi_str_mv 10.1109/SAM48682.2020.9104396
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9104396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9104396</ieee_id><sourcerecordid>9104396</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-1eab75343d0aee29714c7018f93be4dd020a6fa14a4d420bfb494bf6bd421bbc3</originalsourceid><addsrcrecordid>eNo9kN1Kw0AUhFdBsK0-gQh5gdRzdk-T7GWJ9QfiD1TFu7LbPWlW2ibspopvb8Xi1fAxw8CMEJcIY0TQV_PpAxVZIccSJIw1AimdHYkh5rJA1JTRsRhInGBa5PB-KoYxfgBQDmoyEG_zzoTIyXxnY2eWnJTrXew5-O0q-fJ9k1R-yyb8--kj-1Vj29C0rUufA0cOn7_ha9ObZLax7Nwez8RJbdaRzw86Eq83s5fyLq2ebu_LaZV6CapPkY3NJ4qUA8MsdY60zAGLWivL5Nx-kMlqg2TIkQRbW9Jk68zuCa1dqpG4-Ov1zLzogt-Y8L04fKB-ACleUpk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sparse Subspace Clustering with Linear Subspace-Neighborhood-Preserving Data Embedding</title><source>IEEE Xplore All Conference Series</source><creator>Wu, Jwo-Yuh ; Huang, Liang-Chi ; Li, Wen-Hsuan ; Chan, Hau-Hsiang ; Liu, Chun-Hung ; Gau, Rung-Hung</creator><creatorcontrib>Wu, Jwo-Yuh ; Huang, Liang-Chi ; Li, Wen-Hsuan ; Chan, Hau-Hsiang ; Liu, Chun-Hung ; Gau, Rung-Hung</creatorcontrib><description>Data dimensionality reduction via linear embedding is a typical approach to economizing the computational cost of machine learning systems. In the context of sparse subspace clustering (SSC), this paper proposes a two-step neighbor identification scheme using linear neighborhoodpreserving embedding. In the first step, a quadratically- constrained ℓ 1 -minimization algorithm is solved for acquiring the side subspace neighborhood information, whereby a linear neighborhood-preserving embedding is designed accordingly. In the second step, a LASSO sparse regression algorithm is conducted for neighbor identification using the dimensionality- reduced data. The proposed embedding design explicitly takes into account the subspace neighborhood structure of the given data set. Computer simulations using real human face data show that the proposed embedding not only outperforms other existing dimensionality-reduction schemes but also improves the global data clustering accuracy when compared to the baseline solution without data compression.</description><identifier>EISSN: 2151-870X</identifier><identifier>EISBN: 1728119464</identifier><identifier>EISBN: 9781728119465</identifier><identifier>DOI: 10.1109/SAM48682.2020.9104396</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; compressive sensing ; Computer simulation ; Data compression ; Dimensionality reduction ; embedding ; Euclidean distance ; Machine learning algorithms ; minimization ; Signal processing algorithms ; sparse representation ; Sparse subspace clustering</subject><ispartof>2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), 2020, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9104396$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9104396$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Jwo-Yuh</creatorcontrib><creatorcontrib>Huang, Liang-Chi</creatorcontrib><creatorcontrib>Li, Wen-Hsuan</creatorcontrib><creatorcontrib>Chan, Hau-Hsiang</creatorcontrib><creatorcontrib>Liu, Chun-Hung</creatorcontrib><creatorcontrib>Gau, Rung-Hung</creatorcontrib><title>Sparse Subspace Clustering with Linear Subspace-Neighborhood-Preserving Data Embedding</title><title>2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)</title><addtitle>SAM</addtitle><description>Data dimensionality reduction via linear embedding is a typical approach to economizing the computational cost of machine learning systems. In the context of sparse subspace clustering (SSC), this paper proposes a two-step neighbor identification scheme using linear neighborhoodpreserving embedding. In the first step, a quadratically- constrained ℓ 1 -minimization algorithm is solved for acquiring the side subspace neighborhood information, whereby a linear neighborhood-preserving embedding is designed accordingly. In the second step, a LASSO sparse regression algorithm is conducted for neighbor identification using the dimensionality- reduced data. The proposed embedding design explicitly takes into account the subspace neighborhood structure of the given data set. Computer simulations using real human face data show that the proposed embedding not only outperforms other existing dimensionality-reduction schemes but also improves the global data clustering accuracy when compared to the baseline solution without data compression.</description><subject>Clustering algorithms</subject><subject>compressive sensing</subject><subject>Computer simulation</subject><subject>Data compression</subject><subject>Dimensionality reduction</subject><subject>embedding</subject><subject>Euclidean distance</subject><subject>Machine learning algorithms</subject><subject>minimization</subject><subject>Signal processing algorithms</subject><subject>sparse representation</subject><subject>Sparse subspace clustering</subject><issn>2151-870X</issn><isbn>1728119464</isbn><isbn>9781728119465</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kN1Kw0AUhFdBsK0-gQh5gdRzdk-T7GWJ9QfiD1TFu7LbPWlW2ibspopvb8Xi1fAxw8CMEJcIY0TQV_PpAxVZIccSJIw1AimdHYkh5rJA1JTRsRhInGBa5PB-KoYxfgBQDmoyEG_zzoTIyXxnY2eWnJTrXew5-O0q-fJ9k1R-yyb8--kj-1Vj29C0rUufA0cOn7_ha9ObZLax7Nwez8RJbdaRzw86Eq83s5fyLq2ebu_LaZV6CapPkY3NJ4qUA8MsdY60zAGLWivL5Nx-kMlqg2TIkQRbW9Jk68zuCa1dqpG4-Ov1zLzogt-Y8L04fKB-ACleUpk</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Wu, Jwo-Yuh</creator><creator>Huang, Liang-Chi</creator><creator>Li, Wen-Hsuan</creator><creator>Chan, Hau-Hsiang</creator><creator>Liu, Chun-Hung</creator><creator>Gau, Rung-Hung</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202006</creationdate><title>Sparse Subspace Clustering with Linear Subspace-Neighborhood-Preserving Data Embedding</title><author>Wu, Jwo-Yuh ; Huang, Liang-Chi ; Li, Wen-Hsuan ; Chan, Hau-Hsiang ; Liu, Chun-Hung ; Gau, Rung-Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-1eab75343d0aee29714c7018f93be4dd020a6fa14a4d420bfb494bf6bd421bbc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering algorithms</topic><topic>compressive sensing</topic><topic>Computer simulation</topic><topic>Data compression</topic><topic>Dimensionality reduction</topic><topic>embedding</topic><topic>Euclidean distance</topic><topic>Machine learning algorithms</topic><topic>minimization</topic><topic>Signal processing algorithms</topic><topic>sparse representation</topic><topic>Sparse subspace clustering</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jwo-Yuh</creatorcontrib><creatorcontrib>Huang, Liang-Chi</creatorcontrib><creatorcontrib>Li, Wen-Hsuan</creatorcontrib><creatorcontrib>Chan, Hau-Hsiang</creatorcontrib><creatorcontrib>Liu, Chun-Hung</creatorcontrib><creatorcontrib>Gau, Rung-Hung</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Jwo-Yuh</au><au>Huang, Liang-Chi</au><au>Li, Wen-Hsuan</au><au>Chan, Hau-Hsiang</au><au>Liu, Chun-Hung</au><au>Gau, Rung-Hung</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sparse Subspace Clustering with Linear Subspace-Neighborhood-Preserving Data Embedding</atitle><btitle>2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)</btitle><stitle>SAM</stitle><date>2020-06</date><risdate>2020</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2151-870X</eissn><eisbn>1728119464</eisbn><eisbn>9781728119465</eisbn><abstract>Data dimensionality reduction via linear embedding is a typical approach to economizing the computational cost of machine learning systems. In the context of sparse subspace clustering (SSC), this paper proposes a two-step neighbor identification scheme using linear neighborhoodpreserving embedding. In the first step, a quadratically- constrained ℓ 1 -minimization algorithm is solved for acquiring the side subspace neighborhood information, whereby a linear neighborhood-preserving embedding is designed accordingly. In the second step, a LASSO sparse regression algorithm is conducted for neighbor identification using the dimensionality- reduced data. The proposed embedding design explicitly takes into account the subspace neighborhood structure of the given data set. Computer simulations using real human face data show that the proposed embedding not only outperforms other existing dimensionality-reduction schemes but also improves the global data clustering accuracy when compared to the baseline solution without data compression.</abstract><pub>IEEE</pub><doi>10.1109/SAM48682.2020.9104396</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2151-870X
ispartof 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), 2020, p.1-5
issn 2151-870X
language eng
recordid cdi_ieee_primary_9104396
source IEEE Xplore All Conference Series
subjects Clustering algorithms
compressive sensing
Computer simulation
Data compression
Dimensionality reduction
embedding
Euclidean distance
Machine learning algorithms
minimization
Signal processing algorithms
sparse representation
Sparse subspace clustering
title Sparse Subspace Clustering with Linear Subspace-Neighborhood-Preserving Data Embedding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sparse%20Subspace%20Clustering%20with%20Linear%20Subspace-Neighborhood-Preserving%20Data%20Embedding&rft.btitle=2020%20IEEE%2011th%20Sensor%20Array%20and%20Multichannel%20Signal%20Processing%20Workshop%20(SAM)&rft.au=Wu,%20Jwo-Yuh&rft.date=2020-06&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2151-870X&rft_id=info:doi/10.1109/SAM48682.2020.9104396&rft.eisbn=1728119464&rft.eisbn_list=9781728119465&rft_dat=%3Cieee_CHZPO%3E9104396%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-1eab75343d0aee29714c7018f93be4dd020a6fa14a4d420bfb494bf6bd421bbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9104396&rfr_iscdi=true