Loading…
Sparse Subspace Clustering with Linear Subspace-Neighborhood-Preserving Data Embedding
Data dimensionality reduction via linear embedding is a typical approach to economizing the computational cost of machine learning systems. In the context of sparse subspace clustering (SSC), this paper proposes a two-step neighbor identification scheme using linear neighborhoodpreserving embedding....
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Wu, Jwo-Yuh Huang, Liang-Chi Li, Wen-Hsuan Chan, Hau-Hsiang Liu, Chun-Hung Gau, Rung-Hung |
description | Data dimensionality reduction via linear embedding is a typical approach to economizing the computational cost of machine learning systems. In the context of sparse subspace clustering (SSC), this paper proposes a two-step neighbor identification scheme using linear neighborhoodpreserving embedding. In the first step, a quadratically- constrained ℓ 1 -minimization algorithm is solved for acquiring the side subspace neighborhood information, whereby a linear neighborhood-preserving embedding is designed accordingly. In the second step, a LASSO sparse regression algorithm is conducted for neighbor identification using the dimensionality- reduced data. The proposed embedding design explicitly takes into account the subspace neighborhood structure of the given data set. Computer simulations using real human face data show that the proposed embedding not only outperforms other existing dimensionality-reduction schemes but also improves the global data clustering accuracy when compared to the baseline solution without data compression. |
doi_str_mv | 10.1109/SAM48682.2020.9104396 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9104396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9104396</ieee_id><sourcerecordid>9104396</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-1eab75343d0aee29714c7018f93be4dd020a6fa14a4d420bfb494bf6bd421bbc3</originalsourceid><addsrcrecordid>eNo9kN1Kw0AUhFdBsK0-gQh5gdRzdk-T7GWJ9QfiD1TFu7LbPWlW2ibspopvb8Xi1fAxw8CMEJcIY0TQV_PpAxVZIccSJIw1AimdHYkh5rJA1JTRsRhInGBa5PB-KoYxfgBQDmoyEG_zzoTIyXxnY2eWnJTrXew5-O0q-fJ9k1R-yyb8--kj-1Vj29C0rUufA0cOn7_ha9ObZLax7Nwez8RJbdaRzw86Eq83s5fyLq2ebu_LaZV6CapPkY3NJ4qUA8MsdY60zAGLWivL5Nx-kMlqg2TIkQRbW9Jk68zuCa1dqpG4-Ov1zLzogt-Y8L04fKB-ACleUpk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sparse Subspace Clustering with Linear Subspace-Neighborhood-Preserving Data Embedding</title><source>IEEE Xplore All Conference Series</source><creator>Wu, Jwo-Yuh ; Huang, Liang-Chi ; Li, Wen-Hsuan ; Chan, Hau-Hsiang ; Liu, Chun-Hung ; Gau, Rung-Hung</creator><creatorcontrib>Wu, Jwo-Yuh ; Huang, Liang-Chi ; Li, Wen-Hsuan ; Chan, Hau-Hsiang ; Liu, Chun-Hung ; Gau, Rung-Hung</creatorcontrib><description>Data dimensionality reduction via linear embedding is a typical approach to economizing the computational cost of machine learning systems. In the context of sparse subspace clustering (SSC), this paper proposes a two-step neighbor identification scheme using linear neighborhoodpreserving embedding. In the first step, a quadratically- constrained ℓ 1 -minimization algorithm is solved for acquiring the side subspace neighborhood information, whereby a linear neighborhood-preserving embedding is designed accordingly. In the second step, a LASSO sparse regression algorithm is conducted for neighbor identification using the dimensionality- reduced data. The proposed embedding design explicitly takes into account the subspace neighborhood structure of the given data set. Computer simulations using real human face data show that the proposed embedding not only outperforms other existing dimensionality-reduction schemes but also improves the global data clustering accuracy when compared to the baseline solution without data compression.</description><identifier>EISSN: 2151-870X</identifier><identifier>EISBN: 1728119464</identifier><identifier>EISBN: 9781728119465</identifier><identifier>DOI: 10.1109/SAM48682.2020.9104396</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; compressive sensing ; Computer simulation ; Data compression ; Dimensionality reduction ; embedding ; Euclidean distance ; Machine learning algorithms ; minimization ; Signal processing algorithms ; sparse representation ; Sparse subspace clustering</subject><ispartof>2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), 2020, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9104396$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9104396$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Jwo-Yuh</creatorcontrib><creatorcontrib>Huang, Liang-Chi</creatorcontrib><creatorcontrib>Li, Wen-Hsuan</creatorcontrib><creatorcontrib>Chan, Hau-Hsiang</creatorcontrib><creatorcontrib>Liu, Chun-Hung</creatorcontrib><creatorcontrib>Gau, Rung-Hung</creatorcontrib><title>Sparse Subspace Clustering with Linear Subspace-Neighborhood-Preserving Data Embedding</title><title>2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)</title><addtitle>SAM</addtitle><description>Data dimensionality reduction via linear embedding is a typical approach to economizing the computational cost of machine learning systems. In the context of sparse subspace clustering (SSC), this paper proposes a two-step neighbor identification scheme using linear neighborhoodpreserving embedding. In the first step, a quadratically- constrained ℓ 1 -minimization algorithm is solved for acquiring the side subspace neighborhood information, whereby a linear neighborhood-preserving embedding is designed accordingly. In the second step, a LASSO sparse regression algorithm is conducted for neighbor identification using the dimensionality- reduced data. The proposed embedding design explicitly takes into account the subspace neighborhood structure of the given data set. Computer simulations using real human face data show that the proposed embedding not only outperforms other existing dimensionality-reduction schemes but also improves the global data clustering accuracy when compared to the baseline solution without data compression.</description><subject>Clustering algorithms</subject><subject>compressive sensing</subject><subject>Computer simulation</subject><subject>Data compression</subject><subject>Dimensionality reduction</subject><subject>embedding</subject><subject>Euclidean distance</subject><subject>Machine learning algorithms</subject><subject>minimization</subject><subject>Signal processing algorithms</subject><subject>sparse representation</subject><subject>Sparse subspace clustering</subject><issn>2151-870X</issn><isbn>1728119464</isbn><isbn>9781728119465</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kN1Kw0AUhFdBsK0-gQh5gdRzdk-T7GWJ9QfiD1TFu7LbPWlW2ibspopvb8Xi1fAxw8CMEJcIY0TQV_PpAxVZIccSJIw1AimdHYkh5rJA1JTRsRhInGBa5PB-KoYxfgBQDmoyEG_zzoTIyXxnY2eWnJTrXew5-O0q-fJ9k1R-yyb8--kj-1Vj29C0rUufA0cOn7_ha9ObZLax7Nwez8RJbdaRzw86Eq83s5fyLq2ebu_LaZV6CapPkY3NJ4qUA8MsdY60zAGLWivL5Nx-kMlqg2TIkQRbW9Jk68zuCa1dqpG4-Ov1zLzogt-Y8L04fKB-ACleUpk</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Wu, Jwo-Yuh</creator><creator>Huang, Liang-Chi</creator><creator>Li, Wen-Hsuan</creator><creator>Chan, Hau-Hsiang</creator><creator>Liu, Chun-Hung</creator><creator>Gau, Rung-Hung</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202006</creationdate><title>Sparse Subspace Clustering with Linear Subspace-Neighborhood-Preserving Data Embedding</title><author>Wu, Jwo-Yuh ; Huang, Liang-Chi ; Li, Wen-Hsuan ; Chan, Hau-Hsiang ; Liu, Chun-Hung ; Gau, Rung-Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-1eab75343d0aee29714c7018f93be4dd020a6fa14a4d420bfb494bf6bd421bbc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering algorithms</topic><topic>compressive sensing</topic><topic>Computer simulation</topic><topic>Data compression</topic><topic>Dimensionality reduction</topic><topic>embedding</topic><topic>Euclidean distance</topic><topic>Machine learning algorithms</topic><topic>minimization</topic><topic>Signal processing algorithms</topic><topic>sparse representation</topic><topic>Sparse subspace clustering</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jwo-Yuh</creatorcontrib><creatorcontrib>Huang, Liang-Chi</creatorcontrib><creatorcontrib>Li, Wen-Hsuan</creatorcontrib><creatorcontrib>Chan, Hau-Hsiang</creatorcontrib><creatorcontrib>Liu, Chun-Hung</creatorcontrib><creatorcontrib>Gau, Rung-Hung</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Jwo-Yuh</au><au>Huang, Liang-Chi</au><au>Li, Wen-Hsuan</au><au>Chan, Hau-Hsiang</au><au>Liu, Chun-Hung</au><au>Gau, Rung-Hung</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sparse Subspace Clustering with Linear Subspace-Neighborhood-Preserving Data Embedding</atitle><btitle>2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)</btitle><stitle>SAM</stitle><date>2020-06</date><risdate>2020</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2151-870X</eissn><eisbn>1728119464</eisbn><eisbn>9781728119465</eisbn><abstract>Data dimensionality reduction via linear embedding is a typical approach to economizing the computational cost of machine learning systems. In the context of sparse subspace clustering (SSC), this paper proposes a two-step neighbor identification scheme using linear neighborhoodpreserving embedding. In the first step, a quadratically- constrained ℓ 1 -minimization algorithm is solved for acquiring the side subspace neighborhood information, whereby a linear neighborhood-preserving embedding is designed accordingly. In the second step, a LASSO sparse regression algorithm is conducted for neighbor identification using the dimensionality- reduced data. The proposed embedding design explicitly takes into account the subspace neighborhood structure of the given data set. Computer simulations using real human face data show that the proposed embedding not only outperforms other existing dimensionality-reduction schemes but also improves the global data clustering accuracy when compared to the baseline solution without data compression.</abstract><pub>IEEE</pub><doi>10.1109/SAM48682.2020.9104396</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2151-870X |
ispartof | 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), 2020, p.1-5 |
issn | 2151-870X |
language | eng |
recordid | cdi_ieee_primary_9104396 |
source | IEEE Xplore All Conference Series |
subjects | Clustering algorithms compressive sensing Computer simulation Data compression Dimensionality reduction embedding Euclidean distance Machine learning algorithms minimization Signal processing algorithms sparse representation Sparse subspace clustering |
title | Sparse Subspace Clustering with Linear Subspace-Neighborhood-Preserving Data Embedding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sparse%20Subspace%20Clustering%20with%20Linear%20Subspace-Neighborhood-Preserving%20Data%20Embedding&rft.btitle=2020%20IEEE%2011th%20Sensor%20Array%20and%20Multichannel%20Signal%20Processing%20Workshop%20(SAM)&rft.au=Wu,%20Jwo-Yuh&rft.date=2020-06&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2151-870X&rft_id=info:doi/10.1109/SAM48682.2020.9104396&rft.eisbn=1728119464&rft.eisbn_list=9781728119465&rft_dat=%3Cieee_CHZPO%3E9104396%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-1eab75343d0aee29714c7018f93be4dd020a6fa14a4d420bfb494bf6bd421bbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9104396&rfr_iscdi=true |