Loading…

Temperature-Dependent RF Characteristics of Al₂O₃-Passivated WSe₂ MOSFETs

Of all two-dimensional semiconductor crystals, WSe 2 is particularly interesting due to its sizable bandgap, high carrier mobility, and compatibility with large-scale synthesis. By passivating WSe 2 MOSFETs with atomic-layer-deposited Al 2 O 3 , they are stable in room environment for more than five...

Full description

Saved in:
Bibliographic Details
Published in:IEEE electron device letters 2020-07, Vol.41 (7), p.1134-1137
Main Authors: Xiong, Kuanchen, Zhang, Xiaotian, Li, Lei, Zhang, Fu, Davis, Benjamin, Madjar, Asher, Goritz, Alexander, Wietstruck, Matthias, Kaynak, Mehmet, Strandwitz, Nicholas C., Terrones, Mauricio, Redwing, Joan M., Hwang, James C. M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1137
container_issue 7
container_start_page 1134
container_title IEEE electron device letters
container_volume 41
creator Xiong, Kuanchen
Zhang, Xiaotian
Li, Lei
Zhang, Fu
Davis, Benjamin
Madjar, Asher
Goritz, Alexander
Wietstruck, Matthias
Kaynak, Mehmet
Strandwitz, Nicholas C.
Terrones, Mauricio
Redwing, Joan M.
Hwang, James C. M.
description Of all two-dimensional semiconductor crystals, WSe 2 is particularly interesting due to its sizable bandgap, high carrier mobility, and compatibility with large-scale synthesis. By passivating WSe 2 MOSFETs with atomic-layer-deposited Al 2 O 3 , they are stable in room environment for more than five months. The passivation also increases their current capacity by two orders of magnitude. Their cutoff frequencies peak around room temperature, with the forward current cutoff frequency {f} _{T} \sim 0.6 GHz and the maximum frequency of oscillation {f} _{{\textit {MAX}}} \sim 2 GHz. These results show WSe 2 is a promising material for gigahertz thin-film transistors. However, if the surface passivation is not optimized, fixed charge in the passivation layer may lead to temporal and temperature instabilities.
doi_str_mv 10.1109/LED.2020.2999906
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9108204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9108204</ieee_id><sourcerecordid>2419494567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-9f4b7b433ac1a514fc0afaebd79fb1c9a42320f188c718c935f96edab2ec0e3d3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SZ3c3HHks_VKhEbMVj2GxmMaVt4m4qeK3_tL_ElBbnMvDyvDPwMHaLMEAE9TCbjAccOAy46gbiM9bDKEpDiGJxznqQSAwFQnzJrrxfAqCUieyxbEHrhpxut47CMTW0KWnTBm_TYPSpnTYtucq3lfFBbYPhar_bZfvdb_iqva--dUtl8DGnLg1esvl0svDX7MLqlaeb0-6z9y4ePYWz7PF5NJyFhmPchsrKIimkENqgjlBaA9pqKspE2QKN0pILDhbT1CSYGiUiq2IqdcHJAIlS9Nn98W7j6q8t-TZf1lu36V7mXKKSSkZx0lFwpIyrvXdk88ZVa-1-coT8oC3vtOUHbflJW1e5O1YqIvrHFULKQYo_vJRqzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419494567</pqid></control><display><type>article</type><title>Temperature-Dependent RF Characteristics of Al₂O₃-Passivated WSe₂ MOSFETs</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xiong, Kuanchen ; Zhang, Xiaotian ; Li, Lei ; Zhang, Fu ; Davis, Benjamin ; Madjar, Asher ; Goritz, Alexander ; Wietstruck, Matthias ; Kaynak, Mehmet ; Strandwitz, Nicholas C. ; Terrones, Mauricio ; Redwing, Joan M. ; Hwang, James C. M.</creator><creatorcontrib>Xiong, Kuanchen ; Zhang, Xiaotian ; Li, Lei ; Zhang, Fu ; Davis, Benjamin ; Madjar, Asher ; Goritz, Alexander ; Wietstruck, Matthias ; Kaynak, Mehmet ; Strandwitz, Nicholas C. ; Terrones, Mauricio ; Redwing, Joan M. ; Hwang, James C. M.</creatorcontrib><description><![CDATA[Of all two-dimensional semiconductor crystals, WSe 2 is particularly interesting due to its sizable bandgap, high carrier mobility, and compatibility with large-scale synthesis. By passivating WSe 2 MOSFETs with atomic-layer-deposited Al 2 O 3 , they are stable in room environment for more than five months. The passivation also increases their current capacity by two orders of magnitude. Their cutoff frequencies peak around room temperature, with the forward current cutoff frequency <inline-formula> <tex-math notation="LaTeX">{f} _{T} \sim 0.6 </tex-math></inline-formula> GHz and the maximum frequency of oscillation <inline-formula> <tex-math notation="LaTeX">{f} _{{\textit {MAX}}} \sim 2 </tex-math></inline-formula> GHz. These results show WSe 2 is a promising material for gigahertz thin-film transistors. However, if the surface passivation is not optimized, fixed charge in the passivation layer may lead to temporal and temperature instabilities.]]></description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2020.2999906</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum oxide ; Carrier mobility ; CMOS process ; Doping ; Gain ; large scale integration ; Logic gates ; microwave transistors ; MOSFET ; MOSFETs ; Passivation ; Passivity ; Radio frequency ; Room temperature ; Semiconductor crystals ; Semiconductor devices ; semiconductor nanostructures ; Temperature dependence ; thermal stability ; Thin film transistors</subject><ispartof>IEEE electron device letters, 2020-07, Vol.41 (7), p.1134-1137</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5949-8654 ; 0000-0002-9738-0411 ; 0000-0002-8252-0725 ; 0000-0002-1668-0579 ; 0000-0002-1571-1257 ; 0000-0002-7876-4129 ; 0000-0001-7920-0125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9108204$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xiong, Kuanchen</creatorcontrib><creatorcontrib>Zhang, Xiaotian</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Zhang, Fu</creatorcontrib><creatorcontrib>Davis, Benjamin</creatorcontrib><creatorcontrib>Madjar, Asher</creatorcontrib><creatorcontrib>Goritz, Alexander</creatorcontrib><creatorcontrib>Wietstruck, Matthias</creatorcontrib><creatorcontrib>Kaynak, Mehmet</creatorcontrib><creatorcontrib>Strandwitz, Nicholas C.</creatorcontrib><creatorcontrib>Terrones, Mauricio</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Hwang, James C. M.</creatorcontrib><title>Temperature-Dependent RF Characteristics of Al₂O₃-Passivated WSe₂ MOSFETs</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description><![CDATA[Of all two-dimensional semiconductor crystals, WSe 2 is particularly interesting due to its sizable bandgap, high carrier mobility, and compatibility with large-scale synthesis. By passivating WSe 2 MOSFETs with atomic-layer-deposited Al 2 O 3 , they are stable in room environment for more than five months. The passivation also increases their current capacity by two orders of magnitude. Their cutoff frequencies peak around room temperature, with the forward current cutoff frequency <inline-formula> <tex-math notation="LaTeX">{f} _{T} \sim 0.6 </tex-math></inline-formula> GHz and the maximum frequency of oscillation <inline-formula> <tex-math notation="LaTeX">{f} _{{\textit {MAX}}} \sim 2 </tex-math></inline-formula> GHz. These results show WSe 2 is a promising material for gigahertz thin-film transistors. However, if the surface passivation is not optimized, fixed charge in the passivation layer may lead to temporal and temperature instabilities.]]></description><subject>Aluminum oxide</subject><subject>Carrier mobility</subject><subject>CMOS process</subject><subject>Doping</subject><subject>Gain</subject><subject>large scale integration</subject><subject>Logic gates</subject><subject>microwave transistors</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Passivation</subject><subject>Passivity</subject><subject>Radio frequency</subject><subject>Room temperature</subject><subject>Semiconductor crystals</subject><subject>Semiconductor devices</subject><subject>semiconductor nanostructures</subject><subject>Temperature dependence</subject><subject>thermal stability</subject><subject>Thin film transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SZ3c3HHks_VKhEbMVj2GxmMaVt4m4qeK3_tL_ElBbnMvDyvDPwMHaLMEAE9TCbjAccOAy46gbiM9bDKEpDiGJxznqQSAwFQnzJrrxfAqCUieyxbEHrhpxut47CMTW0KWnTBm_TYPSpnTYtucq3lfFBbYPhar_bZfvdb_iqva--dUtl8DGnLg1esvl0svDX7MLqlaeb0-6z9y4ePYWz7PF5NJyFhmPchsrKIimkENqgjlBaA9pqKspE2QKN0pILDhbT1CSYGiUiq2IqdcHJAIlS9Nn98W7j6q8t-TZf1lu36V7mXKKSSkZx0lFwpIyrvXdk88ZVa-1-coT8oC3vtOUHbflJW1e5O1YqIvrHFULKQYo_vJRqzg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Xiong, Kuanchen</creator><creator>Zhang, Xiaotian</creator><creator>Li, Lei</creator><creator>Zhang, Fu</creator><creator>Davis, Benjamin</creator><creator>Madjar, Asher</creator><creator>Goritz, Alexander</creator><creator>Wietstruck, Matthias</creator><creator>Kaynak, Mehmet</creator><creator>Strandwitz, Nicholas C.</creator><creator>Terrones, Mauricio</creator><creator>Redwing, Joan M.</creator><creator>Hwang, James C. M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5949-8654</orcidid><orcidid>https://orcid.org/0000-0002-9738-0411</orcidid><orcidid>https://orcid.org/0000-0002-8252-0725</orcidid><orcidid>https://orcid.org/0000-0002-1668-0579</orcidid><orcidid>https://orcid.org/0000-0002-1571-1257</orcidid><orcidid>https://orcid.org/0000-0002-7876-4129</orcidid><orcidid>https://orcid.org/0000-0001-7920-0125</orcidid></search><sort><creationdate>20200701</creationdate><title>Temperature-Dependent RF Characteristics of Al₂O₃-Passivated WSe₂ MOSFETs</title><author>Xiong, Kuanchen ; Zhang, Xiaotian ; Li, Lei ; Zhang, Fu ; Davis, Benjamin ; Madjar, Asher ; Goritz, Alexander ; Wietstruck, Matthias ; Kaynak, Mehmet ; Strandwitz, Nicholas C. ; Terrones, Mauricio ; Redwing, Joan M. ; Hwang, James C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-9f4b7b433ac1a514fc0afaebd79fb1c9a42320f188c718c935f96edab2ec0e3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Carrier mobility</topic><topic>CMOS process</topic><topic>Doping</topic><topic>Gain</topic><topic>large scale integration</topic><topic>Logic gates</topic><topic>microwave transistors</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Passivation</topic><topic>Passivity</topic><topic>Radio frequency</topic><topic>Room temperature</topic><topic>Semiconductor crystals</topic><topic>Semiconductor devices</topic><topic>semiconductor nanostructures</topic><topic>Temperature dependence</topic><topic>thermal stability</topic><topic>Thin film transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Kuanchen</creatorcontrib><creatorcontrib>Zhang, Xiaotian</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Zhang, Fu</creatorcontrib><creatorcontrib>Davis, Benjamin</creatorcontrib><creatorcontrib>Madjar, Asher</creatorcontrib><creatorcontrib>Goritz, Alexander</creatorcontrib><creatorcontrib>Wietstruck, Matthias</creatorcontrib><creatorcontrib>Kaynak, Mehmet</creatorcontrib><creatorcontrib>Strandwitz, Nicholas C.</creatorcontrib><creatorcontrib>Terrones, Mauricio</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Hwang, James C. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Kuanchen</au><au>Zhang, Xiaotian</au><au>Li, Lei</au><au>Zhang, Fu</au><au>Davis, Benjamin</au><au>Madjar, Asher</au><au>Goritz, Alexander</au><au>Wietstruck, Matthias</au><au>Kaynak, Mehmet</au><au>Strandwitz, Nicholas C.</au><au>Terrones, Mauricio</au><au>Redwing, Joan M.</au><au>Hwang, James C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Dependent RF Characteristics of Al₂O₃-Passivated WSe₂ MOSFETs</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>41</volume><issue>7</issue><spage>1134</spage><epage>1137</epage><pages>1134-1137</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract><![CDATA[Of all two-dimensional semiconductor crystals, WSe 2 is particularly interesting due to its sizable bandgap, high carrier mobility, and compatibility with large-scale synthesis. By passivating WSe 2 MOSFETs with atomic-layer-deposited Al 2 O 3 , they are stable in room environment for more than five months. The passivation also increases their current capacity by two orders of magnitude. Their cutoff frequencies peak around room temperature, with the forward current cutoff frequency <inline-formula> <tex-math notation="LaTeX">{f} _{T} \sim 0.6 </tex-math></inline-formula> GHz and the maximum frequency of oscillation <inline-formula> <tex-math notation="LaTeX">{f} _{{\textit {MAX}}} \sim 2 </tex-math></inline-formula> GHz. These results show WSe 2 is a promising material for gigahertz thin-film transistors. However, if the surface passivation is not optimized, fixed charge in the passivation layer may lead to temporal and temperature instabilities.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2020.2999906</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5949-8654</orcidid><orcidid>https://orcid.org/0000-0002-9738-0411</orcidid><orcidid>https://orcid.org/0000-0002-8252-0725</orcidid><orcidid>https://orcid.org/0000-0002-1668-0579</orcidid><orcidid>https://orcid.org/0000-0002-1571-1257</orcidid><orcidid>https://orcid.org/0000-0002-7876-4129</orcidid><orcidid>https://orcid.org/0000-0001-7920-0125</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2020-07, Vol.41 (7), p.1134-1137
issn 0741-3106
1558-0563
language eng
recordid cdi_ieee_primary_9108204
source IEEE Electronic Library (IEL) Journals
subjects Aluminum oxide
Carrier mobility
CMOS process
Doping
Gain
large scale integration
Logic gates
microwave transistors
MOSFET
MOSFETs
Passivation
Passivity
Radio frequency
Room temperature
Semiconductor crystals
Semiconductor devices
semiconductor nanostructures
Temperature dependence
thermal stability
Thin film transistors
title Temperature-Dependent RF Characteristics of Al₂O₃-Passivated WSe₂ MOSFETs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Dependent%20RF%20Characteristics%20of%20Al%E2%82%82O%E2%82%83-Passivated%20WSe%E2%82%82%20MOSFETs&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Xiong,%20Kuanchen&rft.date=2020-07-01&rft.volume=41&rft.issue=7&rft.spage=1134&rft.epage=1137&rft.pages=1134-1137&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2020.2999906&rft_dat=%3Cproquest_ieee_%3E2419494567%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c216t-9f4b7b433ac1a514fc0afaebd79fb1c9a42320f188c718c935f96edab2ec0e3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2419494567&rft_id=info:pmid/&rft_ieee_id=9108204&rfr_iscdi=true