Loading…
Temperature-Dependent RF Characteristics of Al₂O₃-Passivated WSe₂ MOSFETs
Of all two-dimensional semiconductor crystals, WSe 2 is particularly interesting due to its sizable bandgap, high carrier mobility, and compatibility with large-scale synthesis. By passivating WSe 2 MOSFETs with atomic-layer-deposited Al 2 O 3 , they are stable in room environment for more than five...
Saved in:
Published in: | IEEE electron device letters 2020-07, Vol.41 (7), p.1134-1137 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1137 |
container_issue | 7 |
container_start_page | 1134 |
container_title | IEEE electron device letters |
container_volume | 41 |
creator | Xiong, Kuanchen Zhang, Xiaotian Li, Lei Zhang, Fu Davis, Benjamin Madjar, Asher Goritz, Alexander Wietstruck, Matthias Kaynak, Mehmet Strandwitz, Nicholas C. Terrones, Mauricio Redwing, Joan M. Hwang, James C. M. |
description | Of all two-dimensional semiconductor crystals, WSe 2 is particularly interesting due to its sizable bandgap, high carrier mobility, and compatibility with large-scale synthesis. By passivating WSe 2 MOSFETs with atomic-layer-deposited Al 2 O 3 , they are stable in room environment for more than five months. The passivation also increases their current capacity by two orders of magnitude. Their cutoff frequencies peak around room temperature, with the forward current cutoff frequency {f} _{T} \sim 0.6 GHz and the maximum frequency of oscillation {f} _{{\textit {MAX}}} \sim 2 GHz. These results show WSe 2 is a promising material for gigahertz thin-film transistors. However, if the surface passivation is not optimized, fixed charge in the passivation layer may lead to temporal and temperature instabilities. |
doi_str_mv | 10.1109/LED.2020.2999906 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9108204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9108204</ieee_id><sourcerecordid>2419494567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-9f4b7b433ac1a514fc0afaebd79fb1c9a42320f188c718c935f96edab2ec0e3d3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SZ3c3HHks_VKhEbMVj2GxmMaVt4m4qeK3_tL_ElBbnMvDyvDPwMHaLMEAE9TCbjAccOAy46gbiM9bDKEpDiGJxznqQSAwFQnzJrrxfAqCUieyxbEHrhpxut47CMTW0KWnTBm_TYPSpnTYtucq3lfFBbYPhar_bZfvdb_iqva--dUtl8DGnLg1esvl0svDX7MLqlaeb0-6z9y4ePYWz7PF5NJyFhmPchsrKIimkENqgjlBaA9pqKspE2QKN0pILDhbT1CSYGiUiq2IqdcHJAIlS9Nn98W7j6q8t-TZf1lu36V7mXKKSSkZx0lFwpIyrvXdk88ZVa-1-coT8oC3vtOUHbflJW1e5O1YqIvrHFULKQYo_vJRqzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419494567</pqid></control><display><type>article</type><title>Temperature-Dependent RF Characteristics of Al₂O₃-Passivated WSe₂ MOSFETs</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xiong, Kuanchen ; Zhang, Xiaotian ; Li, Lei ; Zhang, Fu ; Davis, Benjamin ; Madjar, Asher ; Goritz, Alexander ; Wietstruck, Matthias ; Kaynak, Mehmet ; Strandwitz, Nicholas C. ; Terrones, Mauricio ; Redwing, Joan M. ; Hwang, James C. M.</creator><creatorcontrib>Xiong, Kuanchen ; Zhang, Xiaotian ; Li, Lei ; Zhang, Fu ; Davis, Benjamin ; Madjar, Asher ; Goritz, Alexander ; Wietstruck, Matthias ; Kaynak, Mehmet ; Strandwitz, Nicholas C. ; Terrones, Mauricio ; Redwing, Joan M. ; Hwang, James C. M.</creatorcontrib><description><![CDATA[Of all two-dimensional semiconductor crystals, WSe 2 is particularly interesting due to its sizable bandgap, high carrier mobility, and compatibility with large-scale synthesis. By passivating WSe 2 MOSFETs with atomic-layer-deposited Al 2 O 3 , they are stable in room environment for more than five months. The passivation also increases their current capacity by two orders of magnitude. Their cutoff frequencies peak around room temperature, with the forward current cutoff frequency <inline-formula> <tex-math notation="LaTeX">{f} _{T} \sim 0.6 </tex-math></inline-formula> GHz and the maximum frequency of oscillation <inline-formula> <tex-math notation="LaTeX">{f} _{{\textit {MAX}}} \sim 2 </tex-math></inline-formula> GHz. These results show WSe 2 is a promising material for gigahertz thin-film transistors. However, if the surface passivation is not optimized, fixed charge in the passivation layer may lead to temporal and temperature instabilities.]]></description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2020.2999906</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum oxide ; Carrier mobility ; CMOS process ; Doping ; Gain ; large scale integration ; Logic gates ; microwave transistors ; MOSFET ; MOSFETs ; Passivation ; Passivity ; Radio frequency ; Room temperature ; Semiconductor crystals ; Semiconductor devices ; semiconductor nanostructures ; Temperature dependence ; thermal stability ; Thin film transistors</subject><ispartof>IEEE electron device letters, 2020-07, Vol.41 (7), p.1134-1137</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5949-8654 ; 0000-0002-9738-0411 ; 0000-0002-8252-0725 ; 0000-0002-1668-0579 ; 0000-0002-1571-1257 ; 0000-0002-7876-4129 ; 0000-0001-7920-0125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9108204$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xiong, Kuanchen</creatorcontrib><creatorcontrib>Zhang, Xiaotian</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Zhang, Fu</creatorcontrib><creatorcontrib>Davis, Benjamin</creatorcontrib><creatorcontrib>Madjar, Asher</creatorcontrib><creatorcontrib>Goritz, Alexander</creatorcontrib><creatorcontrib>Wietstruck, Matthias</creatorcontrib><creatorcontrib>Kaynak, Mehmet</creatorcontrib><creatorcontrib>Strandwitz, Nicholas C.</creatorcontrib><creatorcontrib>Terrones, Mauricio</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Hwang, James C. M.</creatorcontrib><title>Temperature-Dependent RF Characteristics of Al₂O₃-Passivated WSe₂ MOSFETs</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description><![CDATA[Of all two-dimensional semiconductor crystals, WSe 2 is particularly interesting due to its sizable bandgap, high carrier mobility, and compatibility with large-scale synthesis. By passivating WSe 2 MOSFETs with atomic-layer-deposited Al 2 O 3 , they are stable in room environment for more than five months. The passivation also increases their current capacity by two orders of magnitude. Their cutoff frequencies peak around room temperature, with the forward current cutoff frequency <inline-formula> <tex-math notation="LaTeX">{f} _{T} \sim 0.6 </tex-math></inline-formula> GHz and the maximum frequency of oscillation <inline-formula> <tex-math notation="LaTeX">{f} _{{\textit {MAX}}} \sim 2 </tex-math></inline-formula> GHz. These results show WSe 2 is a promising material for gigahertz thin-film transistors. However, if the surface passivation is not optimized, fixed charge in the passivation layer may lead to temporal and temperature instabilities.]]></description><subject>Aluminum oxide</subject><subject>Carrier mobility</subject><subject>CMOS process</subject><subject>Doping</subject><subject>Gain</subject><subject>large scale integration</subject><subject>Logic gates</subject><subject>microwave transistors</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Passivation</subject><subject>Passivity</subject><subject>Radio frequency</subject><subject>Room temperature</subject><subject>Semiconductor crystals</subject><subject>Semiconductor devices</subject><subject>semiconductor nanostructures</subject><subject>Temperature dependence</subject><subject>thermal stability</subject><subject>Thin film transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SZ3c3HHks_VKhEbMVj2GxmMaVt4m4qeK3_tL_ElBbnMvDyvDPwMHaLMEAE9TCbjAccOAy46gbiM9bDKEpDiGJxznqQSAwFQnzJrrxfAqCUieyxbEHrhpxut47CMTW0KWnTBm_TYPSpnTYtucq3lfFBbYPhar_bZfvdb_iqva--dUtl8DGnLg1esvl0svDX7MLqlaeb0-6z9y4ePYWz7PF5NJyFhmPchsrKIimkENqgjlBaA9pqKspE2QKN0pILDhbT1CSYGiUiq2IqdcHJAIlS9Nn98W7j6q8t-TZf1lu36V7mXKKSSkZx0lFwpIyrvXdk88ZVa-1-coT8oC3vtOUHbflJW1e5O1YqIvrHFULKQYo_vJRqzg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Xiong, Kuanchen</creator><creator>Zhang, Xiaotian</creator><creator>Li, Lei</creator><creator>Zhang, Fu</creator><creator>Davis, Benjamin</creator><creator>Madjar, Asher</creator><creator>Goritz, Alexander</creator><creator>Wietstruck, Matthias</creator><creator>Kaynak, Mehmet</creator><creator>Strandwitz, Nicholas C.</creator><creator>Terrones, Mauricio</creator><creator>Redwing, Joan M.</creator><creator>Hwang, James C. M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5949-8654</orcidid><orcidid>https://orcid.org/0000-0002-9738-0411</orcidid><orcidid>https://orcid.org/0000-0002-8252-0725</orcidid><orcidid>https://orcid.org/0000-0002-1668-0579</orcidid><orcidid>https://orcid.org/0000-0002-1571-1257</orcidid><orcidid>https://orcid.org/0000-0002-7876-4129</orcidid><orcidid>https://orcid.org/0000-0001-7920-0125</orcidid></search><sort><creationdate>20200701</creationdate><title>Temperature-Dependent RF Characteristics of Al₂O₃-Passivated WSe₂ MOSFETs</title><author>Xiong, Kuanchen ; Zhang, Xiaotian ; Li, Lei ; Zhang, Fu ; Davis, Benjamin ; Madjar, Asher ; Goritz, Alexander ; Wietstruck, Matthias ; Kaynak, Mehmet ; Strandwitz, Nicholas C. ; Terrones, Mauricio ; Redwing, Joan M. ; Hwang, James C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-9f4b7b433ac1a514fc0afaebd79fb1c9a42320f188c718c935f96edab2ec0e3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Carrier mobility</topic><topic>CMOS process</topic><topic>Doping</topic><topic>Gain</topic><topic>large scale integration</topic><topic>Logic gates</topic><topic>microwave transistors</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Passivation</topic><topic>Passivity</topic><topic>Radio frequency</topic><topic>Room temperature</topic><topic>Semiconductor crystals</topic><topic>Semiconductor devices</topic><topic>semiconductor nanostructures</topic><topic>Temperature dependence</topic><topic>thermal stability</topic><topic>Thin film transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Kuanchen</creatorcontrib><creatorcontrib>Zhang, Xiaotian</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Zhang, Fu</creatorcontrib><creatorcontrib>Davis, Benjamin</creatorcontrib><creatorcontrib>Madjar, Asher</creatorcontrib><creatorcontrib>Goritz, Alexander</creatorcontrib><creatorcontrib>Wietstruck, Matthias</creatorcontrib><creatorcontrib>Kaynak, Mehmet</creatorcontrib><creatorcontrib>Strandwitz, Nicholas C.</creatorcontrib><creatorcontrib>Terrones, Mauricio</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Hwang, James C. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Kuanchen</au><au>Zhang, Xiaotian</au><au>Li, Lei</au><au>Zhang, Fu</au><au>Davis, Benjamin</au><au>Madjar, Asher</au><au>Goritz, Alexander</au><au>Wietstruck, Matthias</au><au>Kaynak, Mehmet</au><au>Strandwitz, Nicholas C.</au><au>Terrones, Mauricio</au><au>Redwing, Joan M.</au><au>Hwang, James C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Dependent RF Characteristics of Al₂O₃-Passivated WSe₂ MOSFETs</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>41</volume><issue>7</issue><spage>1134</spage><epage>1137</epage><pages>1134-1137</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract><![CDATA[Of all two-dimensional semiconductor crystals, WSe 2 is particularly interesting due to its sizable bandgap, high carrier mobility, and compatibility with large-scale synthesis. By passivating WSe 2 MOSFETs with atomic-layer-deposited Al 2 O 3 , they are stable in room environment for more than five months. The passivation also increases their current capacity by two orders of magnitude. Their cutoff frequencies peak around room temperature, with the forward current cutoff frequency <inline-formula> <tex-math notation="LaTeX">{f} _{T} \sim 0.6 </tex-math></inline-formula> GHz and the maximum frequency of oscillation <inline-formula> <tex-math notation="LaTeX">{f} _{{\textit {MAX}}} \sim 2 </tex-math></inline-formula> GHz. These results show WSe 2 is a promising material for gigahertz thin-film transistors. However, if the surface passivation is not optimized, fixed charge in the passivation layer may lead to temporal and temperature instabilities.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2020.2999906</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5949-8654</orcidid><orcidid>https://orcid.org/0000-0002-9738-0411</orcidid><orcidid>https://orcid.org/0000-0002-8252-0725</orcidid><orcidid>https://orcid.org/0000-0002-1668-0579</orcidid><orcidid>https://orcid.org/0000-0002-1571-1257</orcidid><orcidid>https://orcid.org/0000-0002-7876-4129</orcidid><orcidid>https://orcid.org/0000-0001-7920-0125</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2020-07, Vol.41 (7), p.1134-1137 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_ieee_primary_9108204 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Aluminum oxide Carrier mobility CMOS process Doping Gain large scale integration Logic gates microwave transistors MOSFET MOSFETs Passivation Passivity Radio frequency Room temperature Semiconductor crystals Semiconductor devices semiconductor nanostructures Temperature dependence thermal stability Thin film transistors |
title | Temperature-Dependent RF Characteristics of Al₂O₃-Passivated WSe₂ MOSFETs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Dependent%20RF%20Characteristics%20of%20Al%E2%82%82O%E2%82%83-Passivated%20WSe%E2%82%82%20MOSFETs&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Xiong,%20Kuanchen&rft.date=2020-07-01&rft.volume=41&rft.issue=7&rft.spage=1134&rft.epage=1137&rft.pages=1134-1137&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2020.2999906&rft_dat=%3Cproquest_ieee_%3E2419494567%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c216t-9f4b7b433ac1a514fc0afaebd79fb1c9a42320f188c718c935f96edab2ec0e3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2419494567&rft_id=info:pmid/&rft_ieee_id=9108204&rfr_iscdi=true |