Loading…
Predicting the Direction of US Stock Prices Using Effective Transfer Entropy and Machine Learning Techniques
This study aims to predict the direction of US stock prices by integrating time-varying effective transfer entropy (ETE) and various machine learning algorithms. At first, we explore that the ETE based on 3 and 6 months moving windows can be regarded as the market explanatory variable by analyzing t...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.111660-111682 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study aims to predict the direction of US stock prices by integrating time-varying effective transfer entropy (ETE) and various machine learning algorithms. At first, we explore that the ETE based on 3 and 6 months moving windows can be regarded as the market explanatory variable by analyzing the association between the financial crises and Granger-causal relationships among the stocks. Then, we discover that the prediction performance on the stock price direction can be improved when the ETE driven variable is integrated as a new feature in the logistic regression, multilayer perceptron, random forest, XGBoost, and long short-term memory network. Meanwhile, we suggest utilizing the adjusted accuracy derived from the risk-adjusted return in finance as a prediction performance measure. Lastly, we confirm that the multilayer perceptron and long short-term memory network are more suitable for stock price prediction. This study is the first attempt to predict the stock price direction using ETE, which can be conveniently applied to the practical field. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.3002174 |