Loading…
Autoencoder based Friendly Jamming
Physical layer security (PLS) provides lightweight security solutions in which security is achieved based on the inherent random characteristics of the wireless medium. In this paper, we consider the PLS approach called friendly jamming (FJ), which is more practical thanks to its low computational c...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Physical layer security (PLS) provides lightweight security solutions in which security is achieved based on the inherent random characteristics of the wireless medium. In this paper, we consider the PLS approach called friendly jamming (FJ), which is more practical thanks to its low computational complexity. State-of-the-art methods require that legitimate users have full channel state information (CSI) of their channel. Thanks to the recent promising application of the autoencoder (AE) in communication, we propose a new FJ method for PLS using AE without prior knowledge of the CSI. The proposed AE-based FJ method can provide good secrecy performance while avoiding explicit CSI estimation. We also apply the recently proposed tool for mutual information neural estimation (MINE) to evaluate the secrecy capacity. Moreover, we leverage MINE to avoid end-to-end learning in AE-based FJ. |
---|---|
ISSN: | 1558-2612 |
DOI: | 10.1109/WCNC45663.2020.9120554 |