Loading…
Autoencoder based Friendly Jamming
Physical layer security (PLS) provides lightweight security solutions in which security is achieved based on the inherent random characteristics of the wireless medium. In this paper, we consider the PLS approach called friendly jamming (FJ), which is more practical thanks to its low computational c...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Tuan, Bui Minh Tuyen, Ta Duc Trung, Nguyen Linh Ha, Nguyen Viet |
description | Physical layer security (PLS) provides lightweight security solutions in which security is achieved based on the inherent random characteristics of the wireless medium. In this paper, we consider the PLS approach called friendly jamming (FJ), which is more practical thanks to its low computational complexity. State-of-the-art methods require that legitimate users have full channel state information (CSI) of their channel. Thanks to the recent promising application of the autoencoder (AE) in communication, we propose a new FJ method for PLS using AE without prior knowledge of the CSI. The proposed AE-based FJ method can provide good secrecy performance while avoiding explicit CSI estimation. We also apply the recently proposed tool for mutual information neural estimation (MINE) to evaluate the secrecy capacity. Moreover, we leverage MINE to avoid end-to-end learning in AE-based FJ. |
doi_str_mv | 10.1109/WCNC45663.2020.9120554 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9120554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9120554</ieee_id><sourcerecordid>9120554</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-eaed1830289dc076b6b505b252409610fe43a45d34f25e48ac7fcad1362047343</originalsourceid><addsrcrecordid>eNotj8FKw0AQQFdBsK1-gSDBe-LM7MxmcyzBVqXoRfFYNtmJrDSpJPXQv1ewp3d5PHjG3CIUiFDdf9QvNYtztiAgKCokEOEzM8eSPFoEJ-dmhiI-J4d0aebT9AV_qjDPzN3y57DXod1HHbMmTBqz1Zh0iLtj9hz6Pg2fV-aiC7tJr09cmPfVw1v9mG9e10_1cpMnAnvINWhEb4F8FVsoXeMaAWlIiKFyCJ2yDSzRckei7ENbdm2IaB0Bl5btwtz8d5Oqbr_H1IfxuD392F9s5z3L</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Autoencoder based Friendly Jamming</title><source>IEEE Xplore All Conference Series</source><creator>Tuan, Bui Minh ; Tuyen, Ta Duc ; Trung, Nguyen Linh ; Ha, Nguyen Viet</creator><creatorcontrib>Tuan, Bui Minh ; Tuyen, Ta Duc ; Trung, Nguyen Linh ; Ha, Nguyen Viet</creatorcontrib><description>Physical layer security (PLS) provides lightweight security solutions in which security is achieved based on the inherent random characteristics of the wireless medium. In this paper, we consider the PLS approach called friendly jamming (FJ), which is more practical thanks to its low computational complexity. State-of-the-art methods require that legitimate users have full channel state information (CSI) of their channel. Thanks to the recent promising application of the autoencoder (AE) in communication, we propose a new FJ method for PLS using AE without prior knowledge of the CSI. The proposed AE-based FJ method can provide good secrecy performance while avoiding explicit CSI estimation. We also apply the recently proposed tool for mutual information neural estimation (MINE) to evaluate the secrecy capacity. Moreover, we leverage MINE to avoid end-to-end learning in AE-based FJ.</description><identifier>EISSN: 1558-2612</identifier><identifier>EISBN: 1728131065</identifier><identifier>EISBN: 9781728131061</identifier><identifier>DOI: 10.1109/WCNC45663.2020.9120554</identifier><language>eng</language><publisher>IEEE</publisher><subject>autoencoder ; Estimation ; friendly jamming ; mutual information neural estimation ; Physical layer security ; Receivers ; Reliability ; Security ; Transmitters ; Wireless communication ; wiretap channel</subject><ispartof>2020 IEEE Wireless Communications and Networking Conference (WCNC), 2020, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9120554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9120554$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tuan, Bui Minh</creatorcontrib><creatorcontrib>Tuyen, Ta Duc</creatorcontrib><creatorcontrib>Trung, Nguyen Linh</creatorcontrib><creatorcontrib>Ha, Nguyen Viet</creatorcontrib><title>Autoencoder based Friendly Jamming</title><title>2020 IEEE Wireless Communications and Networking Conference (WCNC)</title><addtitle>WCNC</addtitle><description>Physical layer security (PLS) provides lightweight security solutions in which security is achieved based on the inherent random characteristics of the wireless medium. In this paper, we consider the PLS approach called friendly jamming (FJ), which is more practical thanks to its low computational complexity. State-of-the-art methods require that legitimate users have full channel state information (CSI) of their channel. Thanks to the recent promising application of the autoencoder (AE) in communication, we propose a new FJ method for PLS using AE without prior knowledge of the CSI. The proposed AE-based FJ method can provide good secrecy performance while avoiding explicit CSI estimation. We also apply the recently proposed tool for mutual information neural estimation (MINE) to evaluate the secrecy capacity. Moreover, we leverage MINE to avoid end-to-end learning in AE-based FJ.</description><subject>autoencoder</subject><subject>Estimation</subject><subject>friendly jamming</subject><subject>mutual information neural estimation</subject><subject>Physical layer security</subject><subject>Receivers</subject><subject>Reliability</subject><subject>Security</subject><subject>Transmitters</subject><subject>Wireless communication</subject><subject>wiretap channel</subject><issn>1558-2612</issn><isbn>1728131065</isbn><isbn>9781728131061</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8FKw0AQQFdBsK1-gSDBe-LM7MxmcyzBVqXoRfFYNtmJrDSpJPXQv1ewp3d5PHjG3CIUiFDdf9QvNYtztiAgKCokEOEzM8eSPFoEJ-dmhiI-J4d0aebT9AV_qjDPzN3y57DXod1HHbMmTBqz1Zh0iLtj9hz6Pg2fV-aiC7tJr09cmPfVw1v9mG9e10_1cpMnAnvINWhEb4F8FVsoXeMaAWlIiKFyCJ2yDSzRckei7ENbdm2IaB0Bl5btwtz8d5Oqbr_H1IfxuD392F9s5z3L</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Tuan, Bui Minh</creator><creator>Tuyen, Ta Duc</creator><creator>Trung, Nguyen Linh</creator><creator>Ha, Nguyen Viet</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202005</creationdate><title>Autoencoder based Friendly Jamming</title><author>Tuan, Bui Minh ; Tuyen, Ta Duc ; Trung, Nguyen Linh ; Ha, Nguyen Viet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-eaed1830289dc076b6b505b252409610fe43a45d34f25e48ac7fcad1362047343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>autoencoder</topic><topic>Estimation</topic><topic>friendly jamming</topic><topic>mutual information neural estimation</topic><topic>Physical layer security</topic><topic>Receivers</topic><topic>Reliability</topic><topic>Security</topic><topic>Transmitters</topic><topic>Wireless communication</topic><topic>wiretap channel</topic><toplevel>online_resources</toplevel><creatorcontrib>Tuan, Bui Minh</creatorcontrib><creatorcontrib>Tuyen, Ta Duc</creatorcontrib><creatorcontrib>Trung, Nguyen Linh</creatorcontrib><creatorcontrib>Ha, Nguyen Viet</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tuan, Bui Minh</au><au>Tuyen, Ta Duc</au><au>Trung, Nguyen Linh</au><au>Ha, Nguyen Viet</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Autoencoder based Friendly Jamming</atitle><btitle>2020 IEEE Wireless Communications and Networking Conference (WCNC)</btitle><stitle>WCNC</stitle><date>2020-05</date><risdate>2020</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>1558-2612</eissn><eisbn>1728131065</eisbn><eisbn>9781728131061</eisbn><abstract>Physical layer security (PLS) provides lightweight security solutions in which security is achieved based on the inherent random characteristics of the wireless medium. In this paper, we consider the PLS approach called friendly jamming (FJ), which is more practical thanks to its low computational complexity. State-of-the-art methods require that legitimate users have full channel state information (CSI) of their channel. Thanks to the recent promising application of the autoencoder (AE) in communication, we propose a new FJ method for PLS using AE without prior knowledge of the CSI. The proposed AE-based FJ method can provide good secrecy performance while avoiding explicit CSI estimation. We also apply the recently proposed tool for mutual information neural estimation (MINE) to evaluate the secrecy capacity. Moreover, we leverage MINE to avoid end-to-end learning in AE-based FJ.</abstract><pub>IEEE</pub><doi>10.1109/WCNC45663.2020.9120554</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1558-2612 |
ispartof | 2020 IEEE Wireless Communications and Networking Conference (WCNC), 2020, p.1-6 |
issn | 1558-2612 |
language | eng |
recordid | cdi_ieee_primary_9120554 |
source | IEEE Xplore All Conference Series |
subjects | autoencoder Estimation friendly jamming mutual information neural estimation Physical layer security Receivers Reliability Security Transmitters Wireless communication wiretap channel |
title | Autoencoder based Friendly Jamming |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Autoencoder%20based%20Friendly%20Jamming&rft.btitle=2020%20IEEE%20Wireless%20Communications%20and%20Networking%20Conference%20(WCNC)&rft.au=Tuan,%20Bui%20Minh&rft.date=2020-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=1558-2612&rft_id=info:doi/10.1109/WCNC45663.2020.9120554&rft.eisbn=1728131065&rft.eisbn_list=9781728131061&rft_dat=%3Cieee_CHZPO%3E9120554%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-eaed1830289dc076b6b505b252409610fe43a45d34f25e48ac7fcad1362047343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9120554&rfr_iscdi=true |