Loading…

Autoencoder based Friendly Jamming

Physical layer security (PLS) provides lightweight security solutions in which security is achieved based on the inherent random characteristics of the wireless medium. In this paper, we consider the PLS approach called friendly jamming (FJ), which is more practical thanks to its low computational c...

Full description

Saved in:
Bibliographic Details
Main Authors: Tuan, Bui Minh, Tuyen, Ta Duc, Trung, Nguyen Linh, Ha, Nguyen Viet
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Tuan, Bui Minh
Tuyen, Ta Duc
Trung, Nguyen Linh
Ha, Nguyen Viet
description Physical layer security (PLS) provides lightweight security solutions in which security is achieved based on the inherent random characteristics of the wireless medium. In this paper, we consider the PLS approach called friendly jamming (FJ), which is more practical thanks to its low computational complexity. State-of-the-art methods require that legitimate users have full channel state information (CSI) of their channel. Thanks to the recent promising application of the autoencoder (AE) in communication, we propose a new FJ method for PLS using AE without prior knowledge of the CSI. The proposed AE-based FJ method can provide good secrecy performance while avoiding explicit CSI estimation. We also apply the recently proposed tool for mutual information neural estimation (MINE) to evaluate the secrecy capacity. Moreover, we leverage MINE to avoid end-to-end learning in AE-based FJ.
doi_str_mv 10.1109/WCNC45663.2020.9120554
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9120554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9120554</ieee_id><sourcerecordid>9120554</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-eaed1830289dc076b6b505b252409610fe43a45d34f25e48ac7fcad1362047343</originalsourceid><addsrcrecordid>eNotj8FKw0AQQFdBsK1-gSDBe-LM7MxmcyzBVqXoRfFYNtmJrDSpJPXQv1ewp3d5PHjG3CIUiFDdf9QvNYtztiAgKCokEOEzM8eSPFoEJ-dmhiI-J4d0aebT9AV_qjDPzN3y57DXod1HHbMmTBqz1Zh0iLtj9hz6Pg2fV-aiC7tJr09cmPfVw1v9mG9e10_1cpMnAnvINWhEb4F8FVsoXeMaAWlIiKFyCJ2yDSzRckei7ENbdm2IaB0Bl5btwtz8d5Oqbr_H1IfxuD392F9s5z3L</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Autoencoder based Friendly Jamming</title><source>IEEE Xplore All Conference Series</source><creator>Tuan, Bui Minh ; Tuyen, Ta Duc ; Trung, Nguyen Linh ; Ha, Nguyen Viet</creator><creatorcontrib>Tuan, Bui Minh ; Tuyen, Ta Duc ; Trung, Nguyen Linh ; Ha, Nguyen Viet</creatorcontrib><description>Physical layer security (PLS) provides lightweight security solutions in which security is achieved based on the inherent random characteristics of the wireless medium. In this paper, we consider the PLS approach called friendly jamming (FJ), which is more practical thanks to its low computational complexity. State-of-the-art methods require that legitimate users have full channel state information (CSI) of their channel. Thanks to the recent promising application of the autoencoder (AE) in communication, we propose a new FJ method for PLS using AE without prior knowledge of the CSI. The proposed AE-based FJ method can provide good secrecy performance while avoiding explicit CSI estimation. We also apply the recently proposed tool for mutual information neural estimation (MINE) to evaluate the secrecy capacity. Moreover, we leverage MINE to avoid end-to-end learning in AE-based FJ.</description><identifier>EISSN: 1558-2612</identifier><identifier>EISBN: 1728131065</identifier><identifier>EISBN: 9781728131061</identifier><identifier>DOI: 10.1109/WCNC45663.2020.9120554</identifier><language>eng</language><publisher>IEEE</publisher><subject>autoencoder ; Estimation ; friendly jamming ; mutual information neural estimation ; Physical layer security ; Receivers ; Reliability ; Security ; Transmitters ; Wireless communication ; wiretap channel</subject><ispartof>2020 IEEE Wireless Communications and Networking Conference (WCNC), 2020, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9120554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9120554$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tuan, Bui Minh</creatorcontrib><creatorcontrib>Tuyen, Ta Duc</creatorcontrib><creatorcontrib>Trung, Nguyen Linh</creatorcontrib><creatorcontrib>Ha, Nguyen Viet</creatorcontrib><title>Autoencoder based Friendly Jamming</title><title>2020 IEEE Wireless Communications and Networking Conference (WCNC)</title><addtitle>WCNC</addtitle><description>Physical layer security (PLS) provides lightweight security solutions in which security is achieved based on the inherent random characteristics of the wireless medium. In this paper, we consider the PLS approach called friendly jamming (FJ), which is more practical thanks to its low computational complexity. State-of-the-art methods require that legitimate users have full channel state information (CSI) of their channel. Thanks to the recent promising application of the autoencoder (AE) in communication, we propose a new FJ method for PLS using AE without prior knowledge of the CSI. The proposed AE-based FJ method can provide good secrecy performance while avoiding explicit CSI estimation. We also apply the recently proposed tool for mutual information neural estimation (MINE) to evaluate the secrecy capacity. Moreover, we leverage MINE to avoid end-to-end learning in AE-based FJ.</description><subject>autoencoder</subject><subject>Estimation</subject><subject>friendly jamming</subject><subject>mutual information neural estimation</subject><subject>Physical layer security</subject><subject>Receivers</subject><subject>Reliability</subject><subject>Security</subject><subject>Transmitters</subject><subject>Wireless communication</subject><subject>wiretap channel</subject><issn>1558-2612</issn><isbn>1728131065</isbn><isbn>9781728131061</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8FKw0AQQFdBsK1-gSDBe-LM7MxmcyzBVqXoRfFYNtmJrDSpJPXQv1ewp3d5PHjG3CIUiFDdf9QvNYtztiAgKCokEOEzM8eSPFoEJ-dmhiI-J4d0aebT9AV_qjDPzN3y57DXod1HHbMmTBqz1Zh0iLtj9hz6Pg2fV-aiC7tJr09cmPfVw1v9mG9e10_1cpMnAnvINWhEb4F8FVsoXeMaAWlIiKFyCJ2yDSzRckei7ENbdm2IaB0Bl5btwtz8d5Oqbr_H1IfxuD392F9s5z3L</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Tuan, Bui Minh</creator><creator>Tuyen, Ta Duc</creator><creator>Trung, Nguyen Linh</creator><creator>Ha, Nguyen Viet</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202005</creationdate><title>Autoencoder based Friendly Jamming</title><author>Tuan, Bui Minh ; Tuyen, Ta Duc ; Trung, Nguyen Linh ; Ha, Nguyen Viet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-eaed1830289dc076b6b505b252409610fe43a45d34f25e48ac7fcad1362047343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>autoencoder</topic><topic>Estimation</topic><topic>friendly jamming</topic><topic>mutual information neural estimation</topic><topic>Physical layer security</topic><topic>Receivers</topic><topic>Reliability</topic><topic>Security</topic><topic>Transmitters</topic><topic>Wireless communication</topic><topic>wiretap channel</topic><toplevel>online_resources</toplevel><creatorcontrib>Tuan, Bui Minh</creatorcontrib><creatorcontrib>Tuyen, Ta Duc</creatorcontrib><creatorcontrib>Trung, Nguyen Linh</creatorcontrib><creatorcontrib>Ha, Nguyen Viet</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tuan, Bui Minh</au><au>Tuyen, Ta Duc</au><au>Trung, Nguyen Linh</au><au>Ha, Nguyen Viet</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Autoencoder based Friendly Jamming</atitle><btitle>2020 IEEE Wireless Communications and Networking Conference (WCNC)</btitle><stitle>WCNC</stitle><date>2020-05</date><risdate>2020</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>1558-2612</eissn><eisbn>1728131065</eisbn><eisbn>9781728131061</eisbn><abstract>Physical layer security (PLS) provides lightweight security solutions in which security is achieved based on the inherent random characteristics of the wireless medium. In this paper, we consider the PLS approach called friendly jamming (FJ), which is more practical thanks to its low computational complexity. State-of-the-art methods require that legitimate users have full channel state information (CSI) of their channel. Thanks to the recent promising application of the autoencoder (AE) in communication, we propose a new FJ method for PLS using AE without prior knowledge of the CSI. The proposed AE-based FJ method can provide good secrecy performance while avoiding explicit CSI estimation. We also apply the recently proposed tool for mutual information neural estimation (MINE) to evaluate the secrecy capacity. Moreover, we leverage MINE to avoid end-to-end learning in AE-based FJ.</abstract><pub>IEEE</pub><doi>10.1109/WCNC45663.2020.9120554</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1558-2612
ispartof 2020 IEEE Wireless Communications and Networking Conference (WCNC), 2020, p.1-6
issn 1558-2612
language eng
recordid cdi_ieee_primary_9120554
source IEEE Xplore All Conference Series
subjects autoencoder
Estimation
friendly jamming
mutual information neural estimation
Physical layer security
Receivers
Reliability
Security
Transmitters
Wireless communication
wiretap channel
title Autoencoder based Friendly Jamming
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Autoencoder%20based%20Friendly%20Jamming&rft.btitle=2020%20IEEE%20Wireless%20Communications%20and%20Networking%20Conference%20(WCNC)&rft.au=Tuan,%20Bui%20Minh&rft.date=2020-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=1558-2612&rft_id=info:doi/10.1109/WCNC45663.2020.9120554&rft.eisbn=1728131065&rft.eisbn_list=9781728131061&rft_dat=%3Cieee_CHZPO%3E9120554%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-eaed1830289dc076b6b505b252409610fe43a45d34f25e48ac7fcad1362047343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9120554&rfr_iscdi=true