Loading…

Digit Stability Inference for Iterative Methods Using Redundant Number Representation

In our recent work on iterative computation in hardware, we showed that arbitrary-precision solvers can perform more favorably than their traditional arithmetic equivalents when the latter's precisions are either under- or over-budgeted for the solution of the problem at hand. Significant propo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computers 2021-07, Vol.70 (7), p.1074-1080
Main Authors: Li, He, McInerney, Ian, Davis, James J., Constantinides, George A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c243t-db64fae44b5da6ec7e8bc8c4539b8700612c471359d2e41d5be12da5a5d1b0163
container_end_page 1080
container_issue 7
container_start_page 1074
container_title IEEE transactions on computers
container_volume 70
creator Li, He
McInerney, Ian
Davis, James J.
Constantinides, George A.
description In our recent work on iterative computation in hardware, we showed that arbitrary-precision solvers can perform more favorably than their traditional arithmetic equivalents when the latter's precisions are either under- or over-budgeted for the solution of the problem at hand. Significant proportions of these performance improvements stem from the ability to infer the existence of identical most-significant digits between iterations. This technique uses properties of algorithms operating on redundantly represented numbers to allow the generation of those digits to be skipped, increasing efficiency. It is unable, however, to guarantee that digits will stabilize, i.e., never change in any future iteration. In this article, we address this shortcoming, using interval and forward error analyses to prove that digits of high significance will become stable when computing the approximants of systems of linear equations using stationary iterative methods. We formalize the relationship between matrix conditioning and the rate of growth in most-significant digit stability, using this information to converge to our desired results more quickly. Versus our previous work, an exemplary hardware realization of this new technique achieves an up-to 2.2× speedup in the solution of a set of variously conditioned systems using the Jacobi method.
doi_str_mv 10.1109/TC.2020.3003529
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9121716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9121716</ieee_id><sourcerecordid>2539353171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-db64fae44b5da6ec7e8bc8c4539b8700612c471359d2e41d5be12da5a5d1b0163</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKtnD14CnrfN5-7mKOtXoSpoew7JZrZuaXdrkhX6701p8TQwvO8zw4PQLSUTSomaLqoJI4xMOCFcMnWGRlTKIlNK5udoRAgtM8UFuURXIawJITkjaoSWj-2qjfgrGttu2rjHs64BD10NuOk9nkXwJra_gN8gfvcu4GVouxX-BDd0znQRvw9bCz4tdh4CdDGl--4aXTRmE-DmNMdo-fy0qF6z-cfLrHqYZzUTPGbO5qIxIISVzuRQF1DauqyF5MqWRXqRsloUlEvlGAjqpAXKnJFGOmoJzfkY3R-5O9__DBCiXveD79JJzRKES05TfYymx1Tt-xA8NHrn263xe02JPrjTi0of3OmTu9S4OzZaAPhPK8oSLud_VWhqkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539353171</pqid></control><display><type>article</type><title>Digit Stability Inference for Iterative Methods Using Redundant Number Representation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, He ; McInerney, Ian ; Davis, James J. ; Constantinides, George A.</creator><creatorcontrib>Li, He ; McInerney, Ian ; Davis, James J. ; Constantinides, George A.</creatorcontrib><description>In our recent work on iterative computation in hardware, we showed that arbitrary-precision solvers can perform more favorably than their traditional arithmetic equivalents when the latter's precisions are either under- or over-budgeted for the solution of the problem at hand. Significant proportions of these performance improvements stem from the ability to infer the existence of identical most-significant digits between iterations. This technique uses properties of algorithms operating on redundantly represented numbers to allow the generation of those digits to be skipped, increasing efficiency. It is unable, however, to guarantee that digits will stabilize, i.e., never change in any future iteration. In this article, we address this shortcoming, using interval and forward error analyses to prove that digits of high significance will become stable when computing the approximants of systems of linear equations using stationary iterative methods. We formalize the relationship between matrix conditioning and the rate of growth in most-significant digit stability, using this information to converge to our desired results more quickly. Versus our previous work, an exemplary hardware realization of this new technique achieves an up-to 2.2× speedup in the solution of a set of variously conditioned systems using the Jacobi method.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2020.3003529</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; arbitrary-precision computation ; Conditioning ; Delays ; Digit stability ; Digits ; Error analysis ; Hardware ; Iterative methods ; Jacobian matrices ; Linear equations ; Mathematical analysis ; Matrix methods ; Redundancy ; redundant number representation ; Stability ; Stability criteria ; stationary iterative methods</subject><ispartof>IEEE transactions on computers, 2021-07, Vol.70 (7), p.1074-1080</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c243t-db64fae44b5da6ec7e8bc8c4539b8700612c471359d2e41d5be12da5a5d1b0163</cites><orcidid>0000-0002-0201-310X ; 0000-0002-1540-189X ; 0000-0003-2616-9771 ; 0000-0002-4910-3188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9121716$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>McInerney, Ian</creatorcontrib><creatorcontrib>Davis, James J.</creatorcontrib><creatorcontrib>Constantinides, George A.</creatorcontrib><title>Digit Stability Inference for Iterative Methods Using Redundant Number Representation</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>In our recent work on iterative computation in hardware, we showed that arbitrary-precision solvers can perform more favorably than their traditional arithmetic equivalents when the latter's precisions are either under- or over-budgeted for the solution of the problem at hand. Significant proportions of these performance improvements stem from the ability to infer the existence of identical most-significant digits between iterations. This technique uses properties of algorithms operating on redundantly represented numbers to allow the generation of those digits to be skipped, increasing efficiency. It is unable, however, to guarantee that digits will stabilize, i.e., never change in any future iteration. In this article, we address this shortcoming, using interval and forward error analyses to prove that digits of high significance will become stable when computing the approximants of systems of linear equations using stationary iterative methods. We formalize the relationship between matrix conditioning and the rate of growth in most-significant digit stability, using this information to converge to our desired results more quickly. Versus our previous work, an exemplary hardware realization of this new technique achieves an up-to 2.2× speedup in the solution of a set of variously conditioned systems using the Jacobi method.</description><subject>Algorithms</subject><subject>arbitrary-precision computation</subject><subject>Conditioning</subject><subject>Delays</subject><subject>Digit stability</subject><subject>Digits</subject><subject>Error analysis</subject><subject>Hardware</subject><subject>Iterative methods</subject><subject>Jacobian matrices</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Redundancy</subject><subject>redundant number representation</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>stationary iterative methods</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKtnD14CnrfN5-7mKOtXoSpoew7JZrZuaXdrkhX6701p8TQwvO8zw4PQLSUTSomaLqoJI4xMOCFcMnWGRlTKIlNK5udoRAgtM8UFuURXIawJITkjaoSWj-2qjfgrGttu2rjHs64BD10NuOk9nkXwJra_gN8gfvcu4GVouxX-BDd0znQRvw9bCz4tdh4CdDGl--4aXTRmE-DmNMdo-fy0qF6z-cfLrHqYZzUTPGbO5qIxIISVzuRQF1DauqyF5MqWRXqRsloUlEvlGAjqpAXKnJFGOmoJzfkY3R-5O9__DBCiXveD79JJzRKES05TfYymx1Tt-xA8NHrn263xe02JPrjTi0of3OmTu9S4OzZaAPhPK8oSLud_VWhqkA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Li, He</creator><creator>McInerney, Ian</creator><creator>Davis, James J.</creator><creator>Constantinides, George A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0201-310X</orcidid><orcidid>https://orcid.org/0000-0002-1540-189X</orcidid><orcidid>https://orcid.org/0000-0003-2616-9771</orcidid><orcidid>https://orcid.org/0000-0002-4910-3188</orcidid></search><sort><creationdate>20210701</creationdate><title>Digit Stability Inference for Iterative Methods Using Redundant Number Representation</title><author>Li, He ; McInerney, Ian ; Davis, James J. ; Constantinides, George A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-db64fae44b5da6ec7e8bc8c4539b8700612c471359d2e41d5be12da5a5d1b0163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>arbitrary-precision computation</topic><topic>Conditioning</topic><topic>Delays</topic><topic>Digit stability</topic><topic>Digits</topic><topic>Error analysis</topic><topic>Hardware</topic><topic>Iterative methods</topic><topic>Jacobian matrices</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Redundancy</topic><topic>redundant number representation</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>stationary iterative methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>McInerney, Ian</creatorcontrib><creatorcontrib>Davis, James J.</creatorcontrib><creatorcontrib>Constantinides, George A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, He</au><au>McInerney, Ian</au><au>Davis, James J.</au><au>Constantinides, George A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digit Stability Inference for Iterative Methods Using Redundant Number Representation</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>70</volume><issue>7</issue><spage>1074</spage><epage>1080</epage><pages>1074-1080</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>In our recent work on iterative computation in hardware, we showed that arbitrary-precision solvers can perform more favorably than their traditional arithmetic equivalents when the latter's precisions are either under- or over-budgeted for the solution of the problem at hand. Significant proportions of these performance improvements stem from the ability to infer the existence of identical most-significant digits between iterations. This technique uses properties of algorithms operating on redundantly represented numbers to allow the generation of those digits to be skipped, increasing efficiency. It is unable, however, to guarantee that digits will stabilize, i.e., never change in any future iteration. In this article, we address this shortcoming, using interval and forward error analyses to prove that digits of high significance will become stable when computing the approximants of systems of linear equations using stationary iterative methods. We formalize the relationship between matrix conditioning and the rate of growth in most-significant digit stability, using this information to converge to our desired results more quickly. Versus our previous work, an exemplary hardware realization of this new technique achieves an up-to 2.2× speedup in the solution of a set of variously conditioned systems using the Jacobi method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2020.3003529</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0201-310X</orcidid><orcidid>https://orcid.org/0000-0002-1540-189X</orcidid><orcidid>https://orcid.org/0000-0003-2616-9771</orcidid><orcidid>https://orcid.org/0000-0002-4910-3188</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 2021-07, Vol.70 (7), p.1074-1080
issn 0018-9340
1557-9956
language eng
recordid cdi_ieee_primary_9121716
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
arbitrary-precision computation
Conditioning
Delays
Digit stability
Digits
Error analysis
Hardware
Iterative methods
Jacobian matrices
Linear equations
Mathematical analysis
Matrix methods
Redundancy
redundant number representation
Stability
Stability criteria
stationary iterative methods
title Digit Stability Inference for Iterative Methods Using Redundant Number Representation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digit%20Stability%20Inference%20for%20Iterative%20Methods%20Using%20Redundant%20Number%20Representation&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Li,%20He&rft.date=2021-07-01&rft.volume=70&rft.issue=7&rft.spage=1074&rft.epage=1080&rft.pages=1074-1080&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2020.3003529&rft_dat=%3Cproquest_ieee_%3E2539353171%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c243t-db64fae44b5da6ec7e8bc8c4539b8700612c471359d2e41d5be12da5a5d1b0163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539353171&rft_id=info:pmid/&rft_ieee_id=9121716&rfr_iscdi=true