Loading…
Digit Stability Inference for Iterative Methods Using Redundant Number Representation
In our recent work on iterative computation in hardware, we showed that arbitrary-precision solvers can perform more favorably than their traditional arithmetic equivalents when the latter's precisions are either under- or over-budgeted for the solution of the problem at hand. Significant propo...
Saved in:
Published in: | IEEE transactions on computers 2021-07, Vol.70 (7), p.1074-1080 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c243t-db64fae44b5da6ec7e8bc8c4539b8700612c471359d2e41d5be12da5a5d1b0163 |
container_end_page | 1080 |
container_issue | 7 |
container_start_page | 1074 |
container_title | IEEE transactions on computers |
container_volume | 70 |
creator | Li, He McInerney, Ian Davis, James J. Constantinides, George A. |
description | In our recent work on iterative computation in hardware, we showed that arbitrary-precision solvers can perform more favorably than their traditional arithmetic equivalents when the latter's precisions are either under- or over-budgeted for the solution of the problem at hand. Significant proportions of these performance improvements stem from the ability to infer the existence of identical most-significant digits between iterations. This technique uses properties of algorithms operating on redundantly represented numbers to allow the generation of those digits to be skipped, increasing efficiency. It is unable, however, to guarantee that digits will stabilize, i.e., never change in any future iteration. In this article, we address this shortcoming, using interval and forward error analyses to prove that digits of high significance will become stable when computing the approximants of systems of linear equations using stationary iterative methods. We formalize the relationship between matrix conditioning and the rate of growth in most-significant digit stability, using this information to converge to our desired results more quickly. Versus our previous work, an exemplary hardware realization of this new technique achieves an up-to 2.2× speedup in the solution of a set of variously conditioned systems using the Jacobi method. |
doi_str_mv | 10.1109/TC.2020.3003529 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9121716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9121716</ieee_id><sourcerecordid>2539353171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-db64fae44b5da6ec7e8bc8c4539b8700612c471359d2e41d5be12da5a5d1b0163</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKtnD14CnrfN5-7mKOtXoSpoew7JZrZuaXdrkhX6701p8TQwvO8zw4PQLSUTSomaLqoJI4xMOCFcMnWGRlTKIlNK5udoRAgtM8UFuURXIawJITkjaoSWj-2qjfgrGttu2rjHs64BD10NuOk9nkXwJra_gN8gfvcu4GVouxX-BDd0znQRvw9bCz4tdh4CdDGl--4aXTRmE-DmNMdo-fy0qF6z-cfLrHqYZzUTPGbO5qIxIISVzuRQF1DauqyF5MqWRXqRsloUlEvlGAjqpAXKnJFGOmoJzfkY3R-5O9__DBCiXveD79JJzRKES05TfYymx1Tt-xA8NHrn263xe02JPrjTi0of3OmTu9S4OzZaAPhPK8oSLud_VWhqkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539353171</pqid></control><display><type>article</type><title>Digit Stability Inference for Iterative Methods Using Redundant Number Representation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, He ; McInerney, Ian ; Davis, James J. ; Constantinides, George A.</creator><creatorcontrib>Li, He ; McInerney, Ian ; Davis, James J. ; Constantinides, George A.</creatorcontrib><description>In our recent work on iterative computation in hardware, we showed that arbitrary-precision solvers can perform more favorably than their traditional arithmetic equivalents when the latter's precisions are either under- or over-budgeted for the solution of the problem at hand. Significant proportions of these performance improvements stem from the ability to infer the existence of identical most-significant digits between iterations. This technique uses properties of algorithms operating on redundantly represented numbers to allow the generation of those digits to be skipped, increasing efficiency. It is unable, however, to guarantee that digits will stabilize, i.e., never change in any future iteration. In this article, we address this shortcoming, using interval and forward error analyses to prove that digits of high significance will become stable when computing the approximants of systems of linear equations using stationary iterative methods. We formalize the relationship between matrix conditioning and the rate of growth in most-significant digit stability, using this information to converge to our desired results more quickly. Versus our previous work, an exemplary hardware realization of this new technique achieves an up-to 2.2× speedup in the solution of a set of variously conditioned systems using the Jacobi method.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2020.3003529</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; arbitrary-precision computation ; Conditioning ; Delays ; Digit stability ; Digits ; Error analysis ; Hardware ; Iterative methods ; Jacobian matrices ; Linear equations ; Mathematical analysis ; Matrix methods ; Redundancy ; redundant number representation ; Stability ; Stability criteria ; stationary iterative methods</subject><ispartof>IEEE transactions on computers, 2021-07, Vol.70 (7), p.1074-1080</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c243t-db64fae44b5da6ec7e8bc8c4539b8700612c471359d2e41d5be12da5a5d1b0163</cites><orcidid>0000-0002-0201-310X ; 0000-0002-1540-189X ; 0000-0003-2616-9771 ; 0000-0002-4910-3188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9121716$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>McInerney, Ian</creatorcontrib><creatorcontrib>Davis, James J.</creatorcontrib><creatorcontrib>Constantinides, George A.</creatorcontrib><title>Digit Stability Inference for Iterative Methods Using Redundant Number Representation</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>In our recent work on iterative computation in hardware, we showed that arbitrary-precision solvers can perform more favorably than their traditional arithmetic equivalents when the latter's precisions are either under- or over-budgeted for the solution of the problem at hand. Significant proportions of these performance improvements stem from the ability to infer the existence of identical most-significant digits between iterations. This technique uses properties of algorithms operating on redundantly represented numbers to allow the generation of those digits to be skipped, increasing efficiency. It is unable, however, to guarantee that digits will stabilize, i.e., never change in any future iteration. In this article, we address this shortcoming, using interval and forward error analyses to prove that digits of high significance will become stable when computing the approximants of systems of linear equations using stationary iterative methods. We formalize the relationship between matrix conditioning and the rate of growth in most-significant digit stability, using this information to converge to our desired results more quickly. Versus our previous work, an exemplary hardware realization of this new technique achieves an up-to 2.2× speedup in the solution of a set of variously conditioned systems using the Jacobi method.</description><subject>Algorithms</subject><subject>arbitrary-precision computation</subject><subject>Conditioning</subject><subject>Delays</subject><subject>Digit stability</subject><subject>Digits</subject><subject>Error analysis</subject><subject>Hardware</subject><subject>Iterative methods</subject><subject>Jacobian matrices</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Redundancy</subject><subject>redundant number representation</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>stationary iterative methods</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKtnD14CnrfN5-7mKOtXoSpoew7JZrZuaXdrkhX6701p8TQwvO8zw4PQLSUTSomaLqoJI4xMOCFcMnWGRlTKIlNK5udoRAgtM8UFuURXIawJITkjaoSWj-2qjfgrGttu2rjHs64BD10NuOk9nkXwJra_gN8gfvcu4GVouxX-BDd0znQRvw9bCz4tdh4CdDGl--4aXTRmE-DmNMdo-fy0qF6z-cfLrHqYZzUTPGbO5qIxIISVzuRQF1DauqyF5MqWRXqRsloUlEvlGAjqpAXKnJFGOmoJzfkY3R-5O9__DBCiXveD79JJzRKES05TfYymx1Tt-xA8NHrn263xe02JPrjTi0of3OmTu9S4OzZaAPhPK8oSLud_VWhqkA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Li, He</creator><creator>McInerney, Ian</creator><creator>Davis, James J.</creator><creator>Constantinides, George A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0201-310X</orcidid><orcidid>https://orcid.org/0000-0002-1540-189X</orcidid><orcidid>https://orcid.org/0000-0003-2616-9771</orcidid><orcidid>https://orcid.org/0000-0002-4910-3188</orcidid></search><sort><creationdate>20210701</creationdate><title>Digit Stability Inference for Iterative Methods Using Redundant Number Representation</title><author>Li, He ; McInerney, Ian ; Davis, James J. ; Constantinides, George A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-db64fae44b5da6ec7e8bc8c4539b8700612c471359d2e41d5be12da5a5d1b0163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>arbitrary-precision computation</topic><topic>Conditioning</topic><topic>Delays</topic><topic>Digit stability</topic><topic>Digits</topic><topic>Error analysis</topic><topic>Hardware</topic><topic>Iterative methods</topic><topic>Jacobian matrices</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Redundancy</topic><topic>redundant number representation</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>stationary iterative methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>McInerney, Ian</creatorcontrib><creatorcontrib>Davis, James J.</creatorcontrib><creatorcontrib>Constantinides, George A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, He</au><au>McInerney, Ian</au><au>Davis, James J.</au><au>Constantinides, George A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digit Stability Inference for Iterative Methods Using Redundant Number Representation</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>70</volume><issue>7</issue><spage>1074</spage><epage>1080</epage><pages>1074-1080</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>In our recent work on iterative computation in hardware, we showed that arbitrary-precision solvers can perform more favorably than their traditional arithmetic equivalents when the latter's precisions are either under- or over-budgeted for the solution of the problem at hand. Significant proportions of these performance improvements stem from the ability to infer the existence of identical most-significant digits between iterations. This technique uses properties of algorithms operating on redundantly represented numbers to allow the generation of those digits to be skipped, increasing efficiency. It is unable, however, to guarantee that digits will stabilize, i.e., never change in any future iteration. In this article, we address this shortcoming, using interval and forward error analyses to prove that digits of high significance will become stable when computing the approximants of systems of linear equations using stationary iterative methods. We formalize the relationship between matrix conditioning and the rate of growth in most-significant digit stability, using this information to converge to our desired results more quickly. Versus our previous work, an exemplary hardware realization of this new technique achieves an up-to 2.2× speedup in the solution of a set of variously conditioned systems using the Jacobi method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2020.3003529</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0201-310X</orcidid><orcidid>https://orcid.org/0000-0002-1540-189X</orcidid><orcidid>https://orcid.org/0000-0003-2616-9771</orcidid><orcidid>https://orcid.org/0000-0002-4910-3188</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 2021-07, Vol.70 (7), p.1074-1080 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_ieee_primary_9121716 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms arbitrary-precision computation Conditioning Delays Digit stability Digits Error analysis Hardware Iterative methods Jacobian matrices Linear equations Mathematical analysis Matrix methods Redundancy redundant number representation Stability Stability criteria stationary iterative methods |
title | Digit Stability Inference for Iterative Methods Using Redundant Number Representation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digit%20Stability%20Inference%20for%20Iterative%20Methods%20Using%20Redundant%20Number%20Representation&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Li,%20He&rft.date=2021-07-01&rft.volume=70&rft.issue=7&rft.spage=1074&rft.epage=1080&rft.pages=1074-1080&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2020.3003529&rft_dat=%3Cproquest_ieee_%3E2539353171%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c243t-db64fae44b5da6ec7e8bc8c4539b8700612c471359d2e41d5be12da5a5d1b0163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539353171&rft_id=info:pmid/&rft_ieee_id=9121716&rfr_iscdi=true |