Loading…

Random spherical uncertainty in estimation and robustness

A theorem is formulated that gives an exact probability distribution for a linear function of a random vector uniformly distributed over a ball in n-dimensional space. This mathematical result is illustrated via applications to a number of important problems of estimation and robustness under spheri...

Full description

Saved in:
Bibliographic Details
Main Authors: Polyak, B.T., Shcherbakov, P.S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3340 vol.4
container_issue
container_start_page 3339
container_title
container_volume 4
creator Polyak, B.T.
Shcherbakov, P.S.
description A theorem is formulated that gives an exact probability distribution for a linear function of a random vector uniformly distributed over a ball in n-dimensional space. This mathematical result is illustrated via applications to a number of important problems of estimation and robustness under spherical uncertainty. These include parameter estimation, characterization of attainability sets of dynamical systems, and robust stability of affine polynomial families.
doi_str_mv 10.1109/CDC.2000.912216
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_912216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>912216</ieee_id><sourcerecordid>912216</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-d67fd87b3cd0372bb74cd9ef6ca00c06c6177ac59e4563cb05a04198ede66f693</originalsourceid><addsrcrecordid>eNotj8FKAzEURQMq2FbXgqv8wIwvk5mXZCmjVqEgiK5LJnmDkTZTknTRv3ekru7iHg73MnYnoBYCzEP_1NcNANRGNI3AC7YEpUEiSq0u2QKEEdVfcc2WOf_MoAbEBTMfNvppz_Phm1JwdseP0VEqNsRy4iFyyiXsbQlT5DPJ0zQcc4mU8w27Gu0u0-1_rtjXy_Nn_1pt3tdv_eOmCkI1pfKoRq_VIJ0HqZphUK3zhkZ0FsABOhRKWdcZajuUboDOQiuMJk-IIxq5YvdnbyCi7SHNa9Jpe34pfwGRJEaB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Random spherical uncertainty in estimation and robustness</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Polyak, B.T. ; Shcherbakov, P.S.</creator><creatorcontrib>Polyak, B.T. ; Shcherbakov, P.S.</creatorcontrib><description>A theorem is formulated that gives an exact probability distribution for a linear function of a random vector uniformly distributed over a ball in n-dimensional space. This mathematical result is illustrated via applications to a number of important problems of estimation and robustness under spherical uncertainty. These include parameter estimation, characterization of attainability sets of dynamical systems, and robust stability of affine polynomial families.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 0780366387</identifier><identifier>ISBN: 9780780366381</identifier><identifier>DOI: 10.1109/CDC.2000.912216</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control theory ; Ellipsoids ; Kalman filters ; Least squares approximation ; Parameter estimation ; Polynomials ; Robust stability ; Robustness ; Uncertainty ; Vectors</subject><ispartof>Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), 2000, Vol.4, p.3339-3340 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/912216$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/912216$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Polyak, B.T.</creatorcontrib><creatorcontrib>Shcherbakov, P.S.</creatorcontrib><title>Random spherical uncertainty in estimation and robustness</title><title>Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)</title><addtitle>CDC</addtitle><description>A theorem is formulated that gives an exact probability distribution for a linear function of a random vector uniformly distributed over a ball in n-dimensional space. This mathematical result is illustrated via applications to a number of important problems of estimation and robustness under spherical uncertainty. These include parameter estimation, characterization of attainability sets of dynamical systems, and robust stability of affine polynomial families.</description><subject>Control theory</subject><subject>Ellipsoids</subject><subject>Kalman filters</subject><subject>Least squares approximation</subject><subject>Parameter estimation</subject><subject>Polynomials</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>Uncertainty</subject><subject>Vectors</subject><issn>0191-2216</issn><isbn>0780366387</isbn><isbn>9780780366381</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8FKAzEURQMq2FbXgqv8wIwvk5mXZCmjVqEgiK5LJnmDkTZTknTRv3ekru7iHg73MnYnoBYCzEP_1NcNANRGNI3AC7YEpUEiSq0u2QKEEdVfcc2WOf_MoAbEBTMfNvppz_Phm1JwdseP0VEqNsRy4iFyyiXsbQlT5DPJ0zQcc4mU8w27Gu0u0-1_rtjXy_Nn_1pt3tdv_eOmCkI1pfKoRq_VIJ0HqZphUK3zhkZ0FsABOhRKWdcZajuUboDOQiuMJk-IIxq5YvdnbyCi7SHNa9Jpe34pfwGRJEaB</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Polyak, B.T.</creator><creator>Shcherbakov, P.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Random spherical uncertainty in estimation and robustness</title><author>Polyak, B.T. ; Shcherbakov, P.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-d67fd87b3cd0372bb74cd9ef6ca00c06c6177ac59e4563cb05a04198ede66f693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Control theory</topic><topic>Ellipsoids</topic><topic>Kalman filters</topic><topic>Least squares approximation</topic><topic>Parameter estimation</topic><topic>Polynomials</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>Uncertainty</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Polyak, B.T.</creatorcontrib><creatorcontrib>Shcherbakov, P.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Polyak, B.T.</au><au>Shcherbakov, P.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Random spherical uncertainty in estimation and robustness</atitle><btitle>Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)</btitle><stitle>CDC</stitle><date>2000</date><risdate>2000</risdate><volume>4</volume><spage>3339</spage><epage>3340 vol.4</epage><pages>3339-3340 vol.4</pages><issn>0191-2216</issn><isbn>0780366387</isbn><isbn>9780780366381</isbn><abstract>A theorem is formulated that gives an exact probability distribution for a linear function of a random vector uniformly distributed over a ball in n-dimensional space. This mathematical result is illustrated via applications to a number of important problems of estimation and robustness under spherical uncertainty. These include parameter estimation, characterization of attainability sets of dynamical systems, and robust stability of affine polynomial families.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2000.912216</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), 2000, Vol.4, p.3339-3340 vol.4
issn 0191-2216
language eng
recordid cdi_ieee_primary_912216
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Control theory
Ellipsoids
Kalman filters
Least squares approximation
Parameter estimation
Polynomials
Robust stability
Robustness
Uncertainty
Vectors
title Random spherical uncertainty in estimation and robustness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Random%20spherical%20uncertainty%20in%20estimation%20and%20robustness&rft.btitle=Proceedings%20of%20the%2039th%20IEEE%20Conference%20on%20Decision%20and%20Control%20(Cat.%20No.00CH37187)&rft.au=Polyak,%20B.T.&rft.date=2000&rft.volume=4&rft.spage=3339&rft.epage=3340%20vol.4&rft.pages=3339-3340%20vol.4&rft.issn=0191-2216&rft.isbn=0780366387&rft.isbn_list=9780780366381&rft_id=info:doi/10.1109/CDC.2000.912216&rft_dat=%3Cieee_6IE%3E912216%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-d67fd87b3cd0372bb74cd9ef6ca00c06c6177ac59e4563cb05a04198ede66f693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=912216&rfr_iscdi=true