Loading…
Random spherical uncertainty in estimation and robustness
A theorem is formulated that gives an exact probability distribution for a linear function of a random vector uniformly distributed over a ball in n-dimensional space. This mathematical result is illustrated via applications to a number of important problems of estimation and robustness under spheri...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3340 vol.4 |
container_issue | |
container_start_page | 3339 |
container_title | |
container_volume | 4 |
creator | Polyak, B.T. Shcherbakov, P.S. |
description | A theorem is formulated that gives an exact probability distribution for a linear function of a random vector uniformly distributed over a ball in n-dimensional space. This mathematical result is illustrated via applications to a number of important problems of estimation and robustness under spherical uncertainty. These include parameter estimation, characterization of attainability sets of dynamical systems, and robust stability of affine polynomial families. |
doi_str_mv | 10.1109/CDC.2000.912216 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_912216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>912216</ieee_id><sourcerecordid>912216</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-d67fd87b3cd0372bb74cd9ef6ca00c06c6177ac59e4563cb05a04198ede66f693</originalsourceid><addsrcrecordid>eNotj8FKAzEURQMq2FbXgqv8wIwvk5mXZCmjVqEgiK5LJnmDkTZTknTRv3ekru7iHg73MnYnoBYCzEP_1NcNANRGNI3AC7YEpUEiSq0u2QKEEdVfcc2WOf_MoAbEBTMfNvppz_Phm1JwdseP0VEqNsRy4iFyyiXsbQlT5DPJ0zQcc4mU8w27Gu0u0-1_rtjXy_Nn_1pt3tdv_eOmCkI1pfKoRq_VIJ0HqZphUK3zhkZ0FsABOhRKWdcZajuUboDOQiuMJk-IIxq5YvdnbyCi7SHNa9Jpe34pfwGRJEaB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Random spherical uncertainty in estimation and robustness</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Polyak, B.T. ; Shcherbakov, P.S.</creator><creatorcontrib>Polyak, B.T. ; Shcherbakov, P.S.</creatorcontrib><description>A theorem is formulated that gives an exact probability distribution for a linear function of a random vector uniformly distributed over a ball in n-dimensional space. This mathematical result is illustrated via applications to a number of important problems of estimation and robustness under spherical uncertainty. These include parameter estimation, characterization of attainability sets of dynamical systems, and robust stability of affine polynomial families.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 0780366387</identifier><identifier>ISBN: 9780780366381</identifier><identifier>DOI: 10.1109/CDC.2000.912216</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control theory ; Ellipsoids ; Kalman filters ; Least squares approximation ; Parameter estimation ; Polynomials ; Robust stability ; Robustness ; Uncertainty ; Vectors</subject><ispartof>Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), 2000, Vol.4, p.3339-3340 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/912216$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/912216$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Polyak, B.T.</creatorcontrib><creatorcontrib>Shcherbakov, P.S.</creatorcontrib><title>Random spherical uncertainty in estimation and robustness</title><title>Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)</title><addtitle>CDC</addtitle><description>A theorem is formulated that gives an exact probability distribution for a linear function of a random vector uniformly distributed over a ball in n-dimensional space. This mathematical result is illustrated via applications to a number of important problems of estimation and robustness under spherical uncertainty. These include parameter estimation, characterization of attainability sets of dynamical systems, and robust stability of affine polynomial families.</description><subject>Control theory</subject><subject>Ellipsoids</subject><subject>Kalman filters</subject><subject>Least squares approximation</subject><subject>Parameter estimation</subject><subject>Polynomials</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>Uncertainty</subject><subject>Vectors</subject><issn>0191-2216</issn><isbn>0780366387</isbn><isbn>9780780366381</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8FKAzEURQMq2FbXgqv8wIwvk5mXZCmjVqEgiK5LJnmDkTZTknTRv3ekru7iHg73MnYnoBYCzEP_1NcNANRGNI3AC7YEpUEiSq0u2QKEEdVfcc2WOf_MoAbEBTMfNvppz_Phm1JwdseP0VEqNsRy4iFyyiXsbQlT5DPJ0zQcc4mU8w27Gu0u0-1_rtjXy_Nn_1pt3tdv_eOmCkI1pfKoRq_VIJ0HqZphUK3zhkZ0FsABOhRKWdcZajuUboDOQiuMJk-IIxq5YvdnbyCi7SHNa9Jpe34pfwGRJEaB</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Polyak, B.T.</creator><creator>Shcherbakov, P.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Random spherical uncertainty in estimation and robustness</title><author>Polyak, B.T. ; Shcherbakov, P.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-d67fd87b3cd0372bb74cd9ef6ca00c06c6177ac59e4563cb05a04198ede66f693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Control theory</topic><topic>Ellipsoids</topic><topic>Kalman filters</topic><topic>Least squares approximation</topic><topic>Parameter estimation</topic><topic>Polynomials</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>Uncertainty</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Polyak, B.T.</creatorcontrib><creatorcontrib>Shcherbakov, P.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Polyak, B.T.</au><au>Shcherbakov, P.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Random spherical uncertainty in estimation and robustness</atitle><btitle>Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)</btitle><stitle>CDC</stitle><date>2000</date><risdate>2000</risdate><volume>4</volume><spage>3339</spage><epage>3340 vol.4</epage><pages>3339-3340 vol.4</pages><issn>0191-2216</issn><isbn>0780366387</isbn><isbn>9780780366381</isbn><abstract>A theorem is formulated that gives an exact probability distribution for a linear function of a random vector uniformly distributed over a ball in n-dimensional space. This mathematical result is illustrated via applications to a number of important problems of estimation and robustness under spherical uncertainty. These include parameter estimation, characterization of attainability sets of dynamical systems, and robust stability of affine polynomial families.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2000.912216</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), 2000, Vol.4, p.3339-3340 vol.4 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_912216 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Control theory Ellipsoids Kalman filters Least squares approximation Parameter estimation Polynomials Robust stability Robustness Uncertainty Vectors |
title | Random spherical uncertainty in estimation and robustness |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Random%20spherical%20uncertainty%20in%20estimation%20and%20robustness&rft.btitle=Proceedings%20of%20the%2039th%20IEEE%20Conference%20on%20Decision%20and%20Control%20(Cat.%20No.00CH37187)&rft.au=Polyak,%20B.T.&rft.date=2000&rft.volume=4&rft.spage=3339&rft.epage=3340%20vol.4&rft.pages=3339-3340%20vol.4&rft.issn=0191-2216&rft.isbn=0780366387&rft.isbn_list=9780780366381&rft_id=info:doi/10.1109/CDC.2000.912216&rft_dat=%3Cieee_6IE%3E912216%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-d67fd87b3cd0372bb74cd9ef6ca00c06c6177ac59e4563cb05a04198ede66f693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=912216&rfr_iscdi=true |