Loading…
Explicit Lower Bounds on Strong Quantum Simulation
We consider the problem of classical strong (amplitude-wise) simulation of n -qubit quantum circuits, and identify a subclass of simulators we call monotone. This subclass encompasses almost all prominent simulation techniques. We prove an unconditional (i.e. without relying on any complexity-theor...
Saved in:
Published in: | IEEE transactions on information theory 2020-09, Vol.66 (9), p.5585-5600 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-4750cc7d7372d12e423e3dbec761236d7826d4f00386e052a62269cecaee581f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-4750cc7d7372d12e423e3dbec761236d7826d4f00386e052a62269cecaee581f3 |
container_end_page | 5600 |
container_issue | 9 |
container_start_page | 5585 |
container_title | IEEE transactions on information theory |
container_volume | 66 |
creator | Huang, Cupjin Newman, Michael Szegedy, Mario |
description | We consider the problem of classical strong (amplitude-wise) simulation of n -qubit quantum circuits, and identify a subclass of simulators we call monotone. This subclass encompasses almost all prominent simulation techniques. We prove an unconditional (i.e. without relying on any complexity-theoretic assumptions) and explicit (n-2)(2^{n-3}-1) lower bound on the running time of simulators within this subclass. Assuming the Strong Exponential Time Hypothesis (SETH), we further remark that a universal simulator computing any amplitude to precision 2^{-n}/2 must take at least 2^{n - o(n)} time. We then compare strong simulators to existing SAT solvers, and identify the time-complexity below which a strong simulator would improve on state-of-the-art general SAT solving. Finally, we investigate Clifford+ T quantum circuits with t~T -gates. Using the sparsification lemma, we identify a time complexity lower bound of 2^{2.2451\times 10^{-8}t} below which a strong simulator would improve on state-of-the-art 3-SAT solving. This also yields a conditional exponential lower bound on the growth of the stabilizer rank of magic states. |
doi_str_mv | 10.1109/TIT.2020.3004427 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9123426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9123426</ieee_id><sourcerecordid>2436622087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4750cc7d7372d12e423e3dbec761236d7826d4f00386e052a62269cecaee581f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59TZ2a_kqKXVQkGk9bzEzURS2mzdTVD_vVtaPA0Dz_vO8DB2y2HCOZQP68V6goAwEQBSojljI66UyUut5DkbAfAiL6UsLtlVjJu0SsVxxHD2s9-2ru2zpf-mkD35oatj5rts1QfffWZvQ9X1wy5btbthW_Wt767ZRVNtI92c5pi9z2fr6Uu-fH1eTB-XucOS97k0CpwztREGa44kUZCoP8gZzVHo2hSoa9kAiEITKKw0oi4duYpIFbwRY3Z_7N0H_zVQ7O3GD6FLJy1KoRMOhUkUHCkXfIyBGrsP7a4Kv5aDPZixyYw9mLEnMylyd4y0RPSPl-kriVr8ARInXU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436622087</pqid></control><display><type>article</type><title>Explicit Lower Bounds on Strong Quantum Simulation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Cupjin ; Newman, Michael ; Szegedy, Mario</creator><creatorcontrib>Huang, Cupjin ; Newman, Michael ; Szegedy, Mario</creatorcontrib><description><![CDATA[We consider the problem of classical strong (amplitude-wise) simulation of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-qubit quantum circuits, and identify a subclass of simulators we call monotone. This subclass encompasses almost all prominent simulation techniques. We prove an unconditional (i.e. without relying on any complexity-theoretic assumptions) and explicit <inline-formula> <tex-math notation="LaTeX">(n-2)(2^{n-3}-1) </tex-math></inline-formula> lower bound on the running time of simulators within this subclass. Assuming the Strong Exponential Time Hypothesis (SETH), we further remark that a universal simulator computing any amplitude to precision <inline-formula> <tex-math notation="LaTeX">2^{-n}/2 </tex-math></inline-formula> must take at least <inline-formula> <tex-math notation="LaTeX">2^{n - o(n)} </tex-math></inline-formula> time. We then compare strong simulators to existing SAT solvers, and identify the time-complexity below which a strong simulator would improve on state-of-the-art general SAT solving. Finally, we investigate Clifford+<inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> quantum circuits with <inline-formula> <tex-math notation="LaTeX">t~T </tex-math></inline-formula>-gates. Using the sparsification lemma, we identify a time complexity lower bound of <inline-formula> <tex-math notation="LaTeX">2^{2.2451\times 10^{-8}t} </tex-math></inline-formula> below which a strong simulator would improve on state-of-the-art 3-SAT solving. This also yields a conditional exponential lower bound on the growth of the stabilizer rank of magic states.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.3004427</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplitudes ; circuit simulation ; Circuits ; Complexity ; Complexity theory ; computational complexity ; Computational modeling ; Computer simulation ; Integrated circuit modeling ; Logic gates ; Lower bounds ; Quantum computing ; Quantum mechanics ; Qubits (quantum computing) ; Simulation ; Simulators ; Solvers ; Tensors</subject><ispartof>IEEE transactions on information theory, 2020-09, Vol.66 (9), p.5585-5600</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4750cc7d7372d12e423e3dbec761236d7826d4f00386e052a62269cecaee581f3</citedby><cites>FETCH-LOGICAL-c291t-4750cc7d7372d12e423e3dbec761236d7826d4f00386e052a62269cecaee581f3</cites><orcidid>0000-0002-7466-8033 ; 0000-0002-6640-1072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9123426$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Huang, Cupjin</creatorcontrib><creatorcontrib>Newman, Michael</creatorcontrib><creatorcontrib>Szegedy, Mario</creatorcontrib><title>Explicit Lower Bounds on Strong Quantum Simulation</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[We consider the problem of classical strong (amplitude-wise) simulation of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-qubit quantum circuits, and identify a subclass of simulators we call monotone. This subclass encompasses almost all prominent simulation techniques. We prove an unconditional (i.e. without relying on any complexity-theoretic assumptions) and explicit <inline-formula> <tex-math notation="LaTeX">(n-2)(2^{n-3}-1) </tex-math></inline-formula> lower bound on the running time of simulators within this subclass. Assuming the Strong Exponential Time Hypothesis (SETH), we further remark that a universal simulator computing any amplitude to precision <inline-formula> <tex-math notation="LaTeX">2^{-n}/2 </tex-math></inline-formula> must take at least <inline-formula> <tex-math notation="LaTeX">2^{n - o(n)} </tex-math></inline-formula> time. We then compare strong simulators to existing SAT solvers, and identify the time-complexity below which a strong simulator would improve on state-of-the-art general SAT solving. Finally, we investigate Clifford+<inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> quantum circuits with <inline-formula> <tex-math notation="LaTeX">t~T </tex-math></inline-formula>-gates. Using the sparsification lemma, we identify a time complexity lower bound of <inline-formula> <tex-math notation="LaTeX">2^{2.2451\times 10^{-8}t} </tex-math></inline-formula> below which a strong simulator would improve on state-of-the-art 3-SAT solving. This also yields a conditional exponential lower bound on the growth of the stabilizer rank of magic states.]]></description><subject>Amplitudes</subject><subject>circuit simulation</subject><subject>Circuits</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>computational complexity</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Integrated circuit modeling</subject><subject>Logic gates</subject><subject>Lower bounds</subject><subject>Quantum computing</subject><subject>Quantum mechanics</subject><subject>Qubits (quantum computing)</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Solvers</subject><subject>Tensors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59TZ2a_kqKXVQkGk9bzEzURS2mzdTVD_vVtaPA0Dz_vO8DB2y2HCOZQP68V6goAwEQBSojljI66UyUut5DkbAfAiL6UsLtlVjJu0SsVxxHD2s9-2ru2zpf-mkD35oatj5rts1QfffWZvQ9X1wy5btbthW_Wt767ZRVNtI92c5pi9z2fr6Uu-fH1eTB-XucOS97k0CpwztREGa44kUZCoP8gZzVHo2hSoa9kAiEITKKw0oi4duYpIFbwRY3Z_7N0H_zVQ7O3GD6FLJy1KoRMOhUkUHCkXfIyBGrsP7a4Kv5aDPZixyYw9mLEnMylyd4y0RPSPl-kriVr8ARInXU8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Huang, Cupjin</creator><creator>Newman, Michael</creator><creator>Szegedy, Mario</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7466-8033</orcidid><orcidid>https://orcid.org/0000-0002-6640-1072</orcidid></search><sort><creationdate>20200901</creationdate><title>Explicit Lower Bounds on Strong Quantum Simulation</title><author>Huang, Cupjin ; Newman, Michael ; Szegedy, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4750cc7d7372d12e423e3dbec761236d7826d4f00386e052a62269cecaee581f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>circuit simulation</topic><topic>Circuits</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>computational complexity</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Integrated circuit modeling</topic><topic>Logic gates</topic><topic>Lower bounds</topic><topic>Quantum computing</topic><topic>Quantum mechanics</topic><topic>Qubits (quantum computing)</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Solvers</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Cupjin</creatorcontrib><creatorcontrib>Newman, Michael</creatorcontrib><creatorcontrib>Szegedy, Mario</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Cupjin</au><au>Newman, Michael</au><au>Szegedy, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit Lower Bounds on Strong Quantum Simulation</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>66</volume><issue>9</issue><spage>5585</spage><epage>5600</epage><pages>5585-5600</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[We consider the problem of classical strong (amplitude-wise) simulation of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-qubit quantum circuits, and identify a subclass of simulators we call monotone. This subclass encompasses almost all prominent simulation techniques. We prove an unconditional (i.e. without relying on any complexity-theoretic assumptions) and explicit <inline-formula> <tex-math notation="LaTeX">(n-2)(2^{n-3}-1) </tex-math></inline-formula> lower bound on the running time of simulators within this subclass. Assuming the Strong Exponential Time Hypothesis (SETH), we further remark that a universal simulator computing any amplitude to precision <inline-formula> <tex-math notation="LaTeX">2^{-n}/2 </tex-math></inline-formula> must take at least <inline-formula> <tex-math notation="LaTeX">2^{n - o(n)} </tex-math></inline-formula> time. We then compare strong simulators to existing SAT solvers, and identify the time-complexity below which a strong simulator would improve on state-of-the-art general SAT solving. Finally, we investigate Clifford+<inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> quantum circuits with <inline-formula> <tex-math notation="LaTeX">t~T </tex-math></inline-formula>-gates. Using the sparsification lemma, we identify a time complexity lower bound of <inline-formula> <tex-math notation="LaTeX">2^{2.2451\times 10^{-8}t} </tex-math></inline-formula> below which a strong simulator would improve on state-of-the-art 3-SAT solving. This also yields a conditional exponential lower bound on the growth of the stabilizer rank of magic states.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.3004427</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7466-8033</orcidid><orcidid>https://orcid.org/0000-0002-6640-1072</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2020-09, Vol.66 (9), p.5585-5600 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_9123426 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Amplitudes circuit simulation Circuits Complexity Complexity theory computational complexity Computational modeling Computer simulation Integrated circuit modeling Logic gates Lower bounds Quantum computing Quantum mechanics Qubits (quantum computing) Simulation Simulators Solvers Tensors |
title | Explicit Lower Bounds on Strong Quantum Simulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20Lower%20Bounds%20on%20Strong%20Quantum%20Simulation&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Huang,%20Cupjin&rft.date=2020-09-01&rft.volume=66&rft.issue=9&rft.spage=5585&rft.epage=5600&rft.pages=5585-5600&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.3004427&rft_dat=%3Cproquest_ieee_%3E2436622087%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-4750cc7d7372d12e423e3dbec761236d7826d4f00386e052a62269cecaee581f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2436622087&rft_id=info:pmid/&rft_ieee_id=9123426&rfr_iscdi=true |