Loading…

Explicit Lower Bounds on Strong Quantum Simulation

We consider the problem of classical strong (amplitude-wise) simulation of n -qubit quantum circuits, and identify a subclass of simulators we call monotone. This subclass encompasses almost all prominent simulation techniques. We prove an unconditional (i.e. without relying on any complexity-theor...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2020-09, Vol.66 (9), p.5585-5600
Main Authors: Huang, Cupjin, Newman, Michael, Szegedy, Mario
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-4750cc7d7372d12e423e3dbec761236d7826d4f00386e052a62269cecaee581f3
cites cdi_FETCH-LOGICAL-c291t-4750cc7d7372d12e423e3dbec761236d7826d4f00386e052a62269cecaee581f3
container_end_page 5600
container_issue 9
container_start_page 5585
container_title IEEE transactions on information theory
container_volume 66
creator Huang, Cupjin
Newman, Michael
Szegedy, Mario
description We consider the problem of classical strong (amplitude-wise) simulation of n -qubit quantum circuits, and identify a subclass of simulators we call monotone. This subclass encompasses almost all prominent simulation techniques. We prove an unconditional (i.e. without relying on any complexity-theoretic assumptions) and explicit (n-2)(2^{n-3}-1) lower bound on the running time of simulators within this subclass. Assuming the Strong Exponential Time Hypothesis (SETH), we further remark that a universal simulator computing any amplitude to precision 2^{-n}/2 must take at least 2^{n - o(n)} time. We then compare strong simulators to existing SAT solvers, and identify the time-complexity below which a strong simulator would improve on state-of-the-art general SAT solving. Finally, we investigate Clifford+ T quantum circuits with t~T -gates. Using the sparsification lemma, we identify a time complexity lower bound of 2^{2.2451\times 10^{-8}t} below which a strong simulator would improve on state-of-the-art 3-SAT solving. This also yields a conditional exponential lower bound on the growth of the stabilizer rank of magic states.
doi_str_mv 10.1109/TIT.2020.3004427
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9123426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9123426</ieee_id><sourcerecordid>2436622087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4750cc7d7372d12e423e3dbec761236d7826d4f00386e052a62269cecaee581f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59TZ2a_kqKXVQkGk9bzEzURS2mzdTVD_vVtaPA0Dz_vO8DB2y2HCOZQP68V6goAwEQBSojljI66UyUut5DkbAfAiL6UsLtlVjJu0SsVxxHD2s9-2ru2zpf-mkD35oatj5rts1QfffWZvQ9X1wy5btbthW_Wt767ZRVNtI92c5pi9z2fr6Uu-fH1eTB-XucOS97k0CpwztREGa44kUZCoP8gZzVHo2hSoa9kAiEITKKw0oi4duYpIFbwRY3Z_7N0H_zVQ7O3GD6FLJy1KoRMOhUkUHCkXfIyBGrsP7a4Kv5aDPZixyYw9mLEnMylyd4y0RPSPl-kriVr8ARInXU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436622087</pqid></control><display><type>article</type><title>Explicit Lower Bounds on Strong Quantum Simulation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Cupjin ; Newman, Michael ; Szegedy, Mario</creator><creatorcontrib>Huang, Cupjin ; Newman, Michael ; Szegedy, Mario</creatorcontrib><description><![CDATA[We consider the problem of classical strong (amplitude-wise) simulation of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-qubit quantum circuits, and identify a subclass of simulators we call monotone. This subclass encompasses almost all prominent simulation techniques. We prove an unconditional (i.e. without relying on any complexity-theoretic assumptions) and explicit <inline-formula> <tex-math notation="LaTeX">(n-2)(2^{n-3}-1) </tex-math></inline-formula> lower bound on the running time of simulators within this subclass. Assuming the Strong Exponential Time Hypothesis (SETH), we further remark that a universal simulator computing any amplitude to precision <inline-formula> <tex-math notation="LaTeX">2^{-n}/2 </tex-math></inline-formula> must take at least <inline-formula> <tex-math notation="LaTeX">2^{n - o(n)} </tex-math></inline-formula> time. We then compare strong simulators to existing SAT solvers, and identify the time-complexity below which a strong simulator would improve on state-of-the-art general SAT solving. Finally, we investigate Clifford+<inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> quantum circuits with <inline-formula> <tex-math notation="LaTeX">t~T </tex-math></inline-formula>-gates. Using the sparsification lemma, we identify a time complexity lower bound of <inline-formula> <tex-math notation="LaTeX">2^{2.2451\times 10^{-8}t} </tex-math></inline-formula> below which a strong simulator would improve on state-of-the-art 3-SAT solving. This also yields a conditional exponential lower bound on the growth of the stabilizer rank of magic states.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.3004427</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplitudes ; circuit simulation ; Circuits ; Complexity ; Complexity theory ; computational complexity ; Computational modeling ; Computer simulation ; Integrated circuit modeling ; Logic gates ; Lower bounds ; Quantum computing ; Quantum mechanics ; Qubits (quantum computing) ; Simulation ; Simulators ; Solvers ; Tensors</subject><ispartof>IEEE transactions on information theory, 2020-09, Vol.66 (9), p.5585-5600</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4750cc7d7372d12e423e3dbec761236d7826d4f00386e052a62269cecaee581f3</citedby><cites>FETCH-LOGICAL-c291t-4750cc7d7372d12e423e3dbec761236d7826d4f00386e052a62269cecaee581f3</cites><orcidid>0000-0002-7466-8033 ; 0000-0002-6640-1072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9123426$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Huang, Cupjin</creatorcontrib><creatorcontrib>Newman, Michael</creatorcontrib><creatorcontrib>Szegedy, Mario</creatorcontrib><title>Explicit Lower Bounds on Strong Quantum Simulation</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[We consider the problem of classical strong (amplitude-wise) simulation of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-qubit quantum circuits, and identify a subclass of simulators we call monotone. This subclass encompasses almost all prominent simulation techniques. We prove an unconditional (i.e. without relying on any complexity-theoretic assumptions) and explicit <inline-formula> <tex-math notation="LaTeX">(n-2)(2^{n-3}-1) </tex-math></inline-formula> lower bound on the running time of simulators within this subclass. Assuming the Strong Exponential Time Hypothesis (SETH), we further remark that a universal simulator computing any amplitude to precision <inline-formula> <tex-math notation="LaTeX">2^{-n}/2 </tex-math></inline-formula> must take at least <inline-formula> <tex-math notation="LaTeX">2^{n - o(n)} </tex-math></inline-formula> time. We then compare strong simulators to existing SAT solvers, and identify the time-complexity below which a strong simulator would improve on state-of-the-art general SAT solving. Finally, we investigate Clifford+<inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> quantum circuits with <inline-formula> <tex-math notation="LaTeX">t~T </tex-math></inline-formula>-gates. Using the sparsification lemma, we identify a time complexity lower bound of <inline-formula> <tex-math notation="LaTeX">2^{2.2451\times 10^{-8}t} </tex-math></inline-formula> below which a strong simulator would improve on state-of-the-art 3-SAT solving. This also yields a conditional exponential lower bound on the growth of the stabilizer rank of magic states.]]></description><subject>Amplitudes</subject><subject>circuit simulation</subject><subject>Circuits</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>computational complexity</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Integrated circuit modeling</subject><subject>Logic gates</subject><subject>Lower bounds</subject><subject>Quantum computing</subject><subject>Quantum mechanics</subject><subject>Qubits (quantum computing)</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Solvers</subject><subject>Tensors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59TZ2a_kqKXVQkGk9bzEzURS2mzdTVD_vVtaPA0Dz_vO8DB2y2HCOZQP68V6goAwEQBSojljI66UyUut5DkbAfAiL6UsLtlVjJu0SsVxxHD2s9-2ru2zpf-mkD35oatj5rts1QfffWZvQ9X1wy5btbthW_Wt767ZRVNtI92c5pi9z2fr6Uu-fH1eTB-XucOS97k0CpwztREGa44kUZCoP8gZzVHo2hSoa9kAiEITKKw0oi4duYpIFbwRY3Z_7N0H_zVQ7O3GD6FLJy1KoRMOhUkUHCkXfIyBGrsP7a4Kv5aDPZixyYw9mLEnMylyd4y0RPSPl-kriVr8ARInXU8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Huang, Cupjin</creator><creator>Newman, Michael</creator><creator>Szegedy, Mario</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7466-8033</orcidid><orcidid>https://orcid.org/0000-0002-6640-1072</orcidid></search><sort><creationdate>20200901</creationdate><title>Explicit Lower Bounds on Strong Quantum Simulation</title><author>Huang, Cupjin ; Newman, Michael ; Szegedy, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4750cc7d7372d12e423e3dbec761236d7826d4f00386e052a62269cecaee581f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>circuit simulation</topic><topic>Circuits</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>computational complexity</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Integrated circuit modeling</topic><topic>Logic gates</topic><topic>Lower bounds</topic><topic>Quantum computing</topic><topic>Quantum mechanics</topic><topic>Qubits (quantum computing)</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Solvers</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Cupjin</creatorcontrib><creatorcontrib>Newman, Michael</creatorcontrib><creatorcontrib>Szegedy, Mario</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Cupjin</au><au>Newman, Michael</au><au>Szegedy, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit Lower Bounds on Strong Quantum Simulation</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>66</volume><issue>9</issue><spage>5585</spage><epage>5600</epage><pages>5585-5600</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[We consider the problem of classical strong (amplitude-wise) simulation of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-qubit quantum circuits, and identify a subclass of simulators we call monotone. This subclass encompasses almost all prominent simulation techniques. We prove an unconditional (i.e. without relying on any complexity-theoretic assumptions) and explicit <inline-formula> <tex-math notation="LaTeX">(n-2)(2^{n-3}-1) </tex-math></inline-formula> lower bound on the running time of simulators within this subclass. Assuming the Strong Exponential Time Hypothesis (SETH), we further remark that a universal simulator computing any amplitude to precision <inline-formula> <tex-math notation="LaTeX">2^{-n}/2 </tex-math></inline-formula> must take at least <inline-formula> <tex-math notation="LaTeX">2^{n - o(n)} </tex-math></inline-formula> time. We then compare strong simulators to existing SAT solvers, and identify the time-complexity below which a strong simulator would improve on state-of-the-art general SAT solving. Finally, we investigate Clifford+<inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> quantum circuits with <inline-formula> <tex-math notation="LaTeX">t~T </tex-math></inline-formula>-gates. Using the sparsification lemma, we identify a time complexity lower bound of <inline-formula> <tex-math notation="LaTeX">2^{2.2451\times 10^{-8}t} </tex-math></inline-formula> below which a strong simulator would improve on state-of-the-art 3-SAT solving. This also yields a conditional exponential lower bound on the growth of the stabilizer rank of magic states.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.3004427</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7466-8033</orcidid><orcidid>https://orcid.org/0000-0002-6640-1072</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2020-09, Vol.66 (9), p.5585-5600
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_9123426
source IEEE Electronic Library (IEL) Journals
subjects Amplitudes
circuit simulation
Circuits
Complexity
Complexity theory
computational complexity
Computational modeling
Computer simulation
Integrated circuit modeling
Logic gates
Lower bounds
Quantum computing
Quantum mechanics
Qubits (quantum computing)
Simulation
Simulators
Solvers
Tensors
title Explicit Lower Bounds on Strong Quantum Simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20Lower%20Bounds%20on%20Strong%20Quantum%20Simulation&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Huang,%20Cupjin&rft.date=2020-09-01&rft.volume=66&rft.issue=9&rft.spage=5585&rft.epage=5600&rft.pages=5585-5600&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.3004427&rft_dat=%3Cproquest_ieee_%3E2436622087%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-4750cc7d7372d12e423e3dbec761236d7826d4f00386e052a62269cecaee581f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2436622087&rft_id=info:pmid/&rft_ieee_id=9123426&rfr_iscdi=true