Loading…
Towards Learning Obstacles to Avoid Collisions in Autonomous Robot Navigation
Avoiding obstacles is one of the main tasks in robotic navigation. In this paper, robot navigation using monocular vision is presented. Therefore, an accuracy in the segmentation of obstacles is necessary to avoid collisions by estimating the Time-to-Contact. Our proposal in this research process is...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 27 |
container_issue | |
container_start_page | 24 |
container_title | |
container_volume | |
creator | Sanchez-Garcia, Angel J. Rios-Figueroa, Homero V. Limon-Riano, Xavier Sanchez-Garcia, Juan Andres Cortes-Verdin, Karen |
description | Avoiding obstacles is one of the main tasks in robotic navigation. In this paper, robot navigation using monocular vision is presented. Therefore, an accuracy in the segmentation of obstacles is necessary to avoid collisions by estimating the Time-to-Contact. Our proposal in this research process is based on using YOLO so that through a training process, the robot identifies which regions of the image are potentially obstacles. The experimentation was performed in a real environment, with low daylight and without controlling lighting parameters. The first results of this approach are satisfactory although this project will continue with the learning of other obstacles. |
doi_str_mv | 10.1109/ICMEAE.2019.00012 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9140167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9140167</ieee_id><sourcerecordid>9140167</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-b3e1028e9e8c95458c7e03dcee36e759e84cfba8baae9fbd9c574f80ba931c5d3</originalsourceid><addsrcrecordid>eNotjNFKwzAYRqMgOOceQLzJC3TmT5omuSyl6qBzIPN6JOnfEekaabqJb29Brw585-MQ8gBsDcDM06ba1mW95gzMmjEG_IrcgeIaCiaUvCYLLpXIxGxuySqlz_nDJQiuiwXZ7uO3HdtEG7TjEIYj3bk0Wd9jolOk5SWGllax70MKcUg0DLQ8T3GIp3hO9D26ONE3ewlHO83-ntx0tk-4-ueSfDzX--o1a3Yvm6psssCZmDInEBjXaFB7I3OpvUImWo8oClRynnPfOaudtWg61xovVd5p5qwR4GUrluTxrxsQ8fA1hpMdfw4GcgaFEr-hU0-J</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Towards Learning Obstacles to Avoid Collisions in Autonomous Robot Navigation</title><source>IEEE Xplore All Conference Series</source><creator>Sanchez-Garcia, Angel J. ; Rios-Figueroa, Homero V. ; Limon-Riano, Xavier ; Sanchez-Garcia, Juan Andres ; Cortes-Verdin, Karen</creator><creatorcontrib>Sanchez-Garcia, Angel J. ; Rios-Figueroa, Homero V. ; Limon-Riano, Xavier ; Sanchez-Garcia, Juan Andres ; Cortes-Verdin, Karen</creatorcontrib><description>Avoiding obstacles is one of the main tasks in robotic navigation. In this paper, robot navigation using monocular vision is presented. Therefore, an accuracy in the segmentation of obstacles is necessary to avoid collisions by estimating the Time-to-Contact. Our proposal in this research process is based on using YOLO so that through a training process, the robot identifies which regions of the image are potentially obstacles. The experimentation was performed in a real environment, with low daylight and without controlling lighting parameters. The first results of this approach are satisfactory although this project will continue with the learning of other obstacles.</description><identifier>EISSN: 2573-3001</identifier><identifier>EISBN: 1728160375</identifier><identifier>EISBN: 9781728160375</identifier><identifier>DOI: 10.1109/ICMEAE.2019.00012</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automotive engineering ; Avoiding collisions ; Mechatronics ; robot navigation ; Segmentation ; YOLOv3</subject><ispartof>2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), 2019, p.24-27</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9140167$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9140167$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sanchez-Garcia, Angel J.</creatorcontrib><creatorcontrib>Rios-Figueroa, Homero V.</creatorcontrib><creatorcontrib>Limon-Riano, Xavier</creatorcontrib><creatorcontrib>Sanchez-Garcia, Juan Andres</creatorcontrib><creatorcontrib>Cortes-Verdin, Karen</creatorcontrib><title>Towards Learning Obstacles to Avoid Collisions in Autonomous Robot Navigation</title><title>2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)</title><addtitle>ICMEAE</addtitle><description>Avoiding obstacles is one of the main tasks in robotic navigation. In this paper, robot navigation using monocular vision is presented. Therefore, an accuracy in the segmentation of obstacles is necessary to avoid collisions by estimating the Time-to-Contact. Our proposal in this research process is based on using YOLO so that through a training process, the robot identifies which regions of the image are potentially obstacles. The experimentation was performed in a real environment, with low daylight and without controlling lighting parameters. The first results of this approach are satisfactory although this project will continue with the learning of other obstacles.</description><subject>Automotive engineering</subject><subject>Avoiding collisions</subject><subject>Mechatronics</subject><subject>robot navigation</subject><subject>Segmentation</subject><subject>YOLOv3</subject><issn>2573-3001</issn><isbn>1728160375</isbn><isbn>9781728160375</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjNFKwzAYRqMgOOceQLzJC3TmT5omuSyl6qBzIPN6JOnfEekaabqJb29Brw585-MQ8gBsDcDM06ba1mW95gzMmjEG_IrcgeIaCiaUvCYLLpXIxGxuySqlz_nDJQiuiwXZ7uO3HdtEG7TjEIYj3bk0Wd9jolOk5SWGllax70MKcUg0DLQ8T3GIp3hO9D26ONE3ewlHO83-ntx0tk-4-ueSfDzX--o1a3Yvm6psssCZmDInEBjXaFB7I3OpvUImWo8oClRynnPfOaudtWg61xovVd5p5qwR4GUrluTxrxsQ8fA1hpMdfw4GcgaFEr-hU0-J</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Sanchez-Garcia, Angel J.</creator><creator>Rios-Figueroa, Homero V.</creator><creator>Limon-Riano, Xavier</creator><creator>Sanchez-Garcia, Juan Andres</creator><creator>Cortes-Verdin, Karen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201911</creationdate><title>Towards Learning Obstacles to Avoid Collisions in Autonomous Robot Navigation</title><author>Sanchez-Garcia, Angel J. ; Rios-Figueroa, Homero V. ; Limon-Riano, Xavier ; Sanchez-Garcia, Juan Andres ; Cortes-Verdin, Karen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-b3e1028e9e8c95458c7e03dcee36e759e84cfba8baae9fbd9c574f80ba931c5d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automotive engineering</topic><topic>Avoiding collisions</topic><topic>Mechatronics</topic><topic>robot navigation</topic><topic>Segmentation</topic><topic>YOLOv3</topic><toplevel>online_resources</toplevel><creatorcontrib>Sanchez-Garcia, Angel J.</creatorcontrib><creatorcontrib>Rios-Figueroa, Homero V.</creatorcontrib><creatorcontrib>Limon-Riano, Xavier</creatorcontrib><creatorcontrib>Sanchez-Garcia, Juan Andres</creatorcontrib><creatorcontrib>Cortes-Verdin, Karen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sanchez-Garcia, Angel J.</au><au>Rios-Figueroa, Homero V.</au><au>Limon-Riano, Xavier</au><au>Sanchez-Garcia, Juan Andres</au><au>Cortes-Verdin, Karen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Towards Learning Obstacles to Avoid Collisions in Autonomous Robot Navigation</atitle><btitle>2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)</btitle><stitle>ICMEAE</stitle><date>2019-11</date><risdate>2019</risdate><spage>24</spage><epage>27</epage><pages>24-27</pages><eissn>2573-3001</eissn><eisbn>1728160375</eisbn><eisbn>9781728160375</eisbn><abstract>Avoiding obstacles is one of the main tasks in robotic navigation. In this paper, robot navigation using monocular vision is presented. Therefore, an accuracy in the segmentation of obstacles is necessary to avoid collisions by estimating the Time-to-Contact. Our proposal in this research process is based on using YOLO so that through a training process, the robot identifies which regions of the image are potentially obstacles. The experimentation was performed in a real environment, with low daylight and without controlling lighting parameters. The first results of this approach are satisfactory although this project will continue with the learning of other obstacles.</abstract><pub>IEEE</pub><doi>10.1109/ICMEAE.2019.00012</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2573-3001 |
ispartof | 2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), 2019, p.24-27 |
issn | 2573-3001 |
language | eng |
recordid | cdi_ieee_primary_9140167 |
source | IEEE Xplore All Conference Series |
subjects | Automotive engineering Avoiding collisions Mechatronics robot navigation Segmentation YOLOv3 |
title | Towards Learning Obstacles to Avoid Collisions in Autonomous Robot Navigation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Towards%20Learning%20Obstacles%20to%20Avoid%20Collisions%20in%20Autonomous%20Robot%20Navigation&rft.btitle=2019%20International%20Conference%20on%20Mechatronics,%20Electronics%20and%20Automotive%20Engineering%20(ICMEAE)&rft.au=Sanchez-Garcia,%20Angel%20J.&rft.date=2019-11&rft.spage=24&rft.epage=27&rft.pages=24-27&rft.eissn=2573-3001&rft_id=info:doi/10.1109/ICMEAE.2019.00012&rft.eisbn=1728160375&rft.eisbn_list=9781728160375&rft_dat=%3Cieee_CHZPO%3E9140167%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-b3e1028e9e8c95458c7e03dcee36e759e84cfba8baae9fbd9c574f80ba931c5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9140167&rfr_iscdi=true |