Loading…

Sensor-Based Deviant Behavior Detection System Using Deep Learning to Help Dementia Caregivers

The number of elderly people suffering from dementia, a senile disease, is increasing day by day due to the rapid aging of the population. As a result, social and economic costs are also gradually increasing. To prevent such monetary losses, a system that can operate at a low cost is needed to care...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.136004-136013
Main Authors: Kim, Kookjin, Lee, Seungjin, Kim, Sungjoong, Kim, Jaekeun, Shin, Dongil, Shin, Dongkyoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c358t-fdcde2db4791f2a4bd54f5613bca19e9ec673688cbff6e0c7d0f4ff079107c7a3
container_end_page 136013
container_issue
container_start_page 136004
container_title IEEE access
container_volume 8
creator Kim, Kookjin
Lee, Seungjin
Kim, Sungjoong
Kim, Jaekeun
Shin, Dongil
Shin, Dongkyoo
description The number of elderly people suffering from dementia, a senile disease, is increasing day by day due to the rapid aging of the population. As a result, social and economic costs are also gradually increasing. To prevent such monetary losses, a system that can operate at a low cost is needed to care for dementia patients. Therefore, this research proposes a sensor-based deviant behavior detection system that allows caregivers to easily manage dementia patients even if they are not in the same location as their dementia patients at a low cost. In this research, the autoencoder and the LSTM models were used together, because deviance behavior is difficult to obtain labeled data. The autoencoder model is a representative unsupervised learning model, which can be used to extract characteristics of data, and was used to learn characteristics of normal behavioral data. The LSTM model is used to determine the deviant behavior from output outlier data that exceeds the threshold in the autoencoder. As a result of the experiment, each model achieved more than 96% and more than 99% accuracy. This research is expected to help caregivers of dementia patients manage the elderly with dementia more inexpensively and efficiently.
doi_str_mv 10.1109/ACCESS.2020.3011654
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9146821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9146821</ieee_id><doaj_id>oai_doaj_org_article_4646166e58194ae38eb09b29c705f85d</doaj_id><sourcerecordid>2454641259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-fdcde2db4791f2a4bd54f5613bca19e9ec673688cbff6e0c7d0f4ff079107c7a3</originalsourceid><addsrcrecordid>eNpNkUtLAzEUhQdRsGh_QTcDrqfmPZNlHZ9QcFHdGjKZm5rSTmoSC_57U0fEbG7ycc7JhVMUM4zmGCN5vWjbu9VqThBBc4owFpydFBOChawop-L03_28mMa4Qfk0GfF6UrytYIg-VDc6Ql_ewsHpIZU38K4PzocMEpjk_FCuvmKCXfka3bDOGPblEnQYjq_ky0fY7jPdwZCcLlsdYO0OEOJlcWb1NsL0d14Ur_d3L-1jtXx-eGoXy8pQ3qTK9qYH0nesltgSzbqeM8sFpp3RWIIEI2oqmsZ01gpApu6RZdaiLEe1qTW9KJ7G3N7rjdoHt9PhS3nt1A_wYa10SM5sQTHBBBYCeIMl00Ab6JDsiDQ14rbhfc66GrP2wX98Qkxq4z_DkNdXhPFsx4TLrKKjygQfYwD79ytG6tiLGntRx17Uby_ZNRtdDgD-HBIz0RBMvwHdtYj7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454641259</pqid></control><display><type>article</type><title>Sensor-Based Deviant Behavior Detection System Using Deep Learning to Help Dementia Caregivers</title><source>IEEE Open Access Journals</source><creator>Kim, Kookjin ; Lee, Seungjin ; Kim, Sungjoong ; Kim, Jaekeun ; Shin, Dongil ; Shin, Dongkyoo</creator><creatorcontrib>Kim, Kookjin ; Lee, Seungjin ; Kim, Sungjoong ; Kim, Jaekeun ; Shin, Dongil ; Shin, Dongkyoo</creatorcontrib><description>The number of elderly people suffering from dementia, a senile disease, is increasing day by day due to the rapid aging of the population. As a result, social and economic costs are also gradually increasing. To prevent such monetary losses, a system that can operate at a low cost is needed to care for dementia patients. Therefore, this research proposes a sensor-based deviant behavior detection system that allows caregivers to easily manage dementia patients even if they are not in the same location as their dementia patients at a low cost. In this research, the autoencoder and the LSTM models were used together, because deviance behavior is difficult to obtain labeled data. The autoencoder model is a representative unsupervised learning model, which can be used to extract characteristics of data, and was used to learn characteristics of normal behavioral data. The LSTM model is used to determine the deviant behavior from output outlier data that exceeds the threshold in the autoencoder. As a result of the experiment, each model achieved more than 96% and more than 99% accuracy. This research is expected to help caregivers of dementia patients manage the elderly with dementia more inexpensively and efficiently.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3011654</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>autoencoder ; Biological system modeling ; Caregivers ; Data models ; Deep learning ; Dementia ; Deviance ; Deviant detection ; Economic impact ; Hidden Markov models ; long short-term memory models ; Low cost ; Older people ; Outliers (statistics) ; Senior citizens ; Statistics</subject><ispartof>IEEE access, 2020, Vol.8, p.136004-136013</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-fdcde2db4791f2a4bd54f5613bca19e9ec673688cbff6e0c7d0f4ff079107c7a3</cites><orcidid>0000-0002-8621-715X ; 0000-0002-2665-3339 ; 0000-0001-9094-4053 ; 0000-0002-7347-5045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9146821$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Kim, Kookjin</creatorcontrib><creatorcontrib>Lee, Seungjin</creatorcontrib><creatorcontrib>Kim, Sungjoong</creatorcontrib><creatorcontrib>Kim, Jaekeun</creatorcontrib><creatorcontrib>Shin, Dongil</creatorcontrib><creatorcontrib>Shin, Dongkyoo</creatorcontrib><title>Sensor-Based Deviant Behavior Detection System Using Deep Learning to Help Dementia Caregivers</title><title>IEEE access</title><addtitle>Access</addtitle><description>The number of elderly people suffering from dementia, a senile disease, is increasing day by day due to the rapid aging of the population. As a result, social and economic costs are also gradually increasing. To prevent such monetary losses, a system that can operate at a low cost is needed to care for dementia patients. Therefore, this research proposes a sensor-based deviant behavior detection system that allows caregivers to easily manage dementia patients even if they are not in the same location as their dementia patients at a low cost. In this research, the autoencoder and the LSTM models were used together, because deviance behavior is difficult to obtain labeled data. The autoencoder model is a representative unsupervised learning model, which can be used to extract characteristics of data, and was used to learn characteristics of normal behavioral data. The LSTM model is used to determine the deviant behavior from output outlier data that exceeds the threshold in the autoencoder. As a result of the experiment, each model achieved more than 96% and more than 99% accuracy. This research is expected to help caregivers of dementia patients manage the elderly with dementia more inexpensively and efficiently.</description><subject>autoencoder</subject><subject>Biological system modeling</subject><subject>Caregivers</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Dementia</subject><subject>Deviance</subject><subject>Deviant detection</subject><subject>Economic impact</subject><subject>Hidden Markov models</subject><subject>long short-term memory models</subject><subject>Low cost</subject><subject>Older people</subject><subject>Outliers (statistics)</subject><subject>Senior citizens</subject><subject>Statistics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEUhQdRsGh_QTcDrqfmPZNlHZ9QcFHdGjKZm5rSTmoSC_57U0fEbG7ycc7JhVMUM4zmGCN5vWjbu9VqThBBc4owFpydFBOChawop-L03_28mMa4Qfk0GfF6UrytYIg-VDc6Ql_ewsHpIZU38K4PzocMEpjk_FCuvmKCXfka3bDOGPblEnQYjq_ky0fY7jPdwZCcLlsdYO0OEOJlcWb1NsL0d14Ur_d3L-1jtXx-eGoXy8pQ3qTK9qYH0nesltgSzbqeM8sFpp3RWIIEI2oqmsZ01gpApu6RZdaiLEe1qTW9KJ7G3N7rjdoHt9PhS3nt1A_wYa10SM5sQTHBBBYCeIMl00Ab6JDsiDQ14rbhfc66GrP2wX98Qkxq4z_DkNdXhPFsx4TLrKKjygQfYwD79ytG6tiLGntRx17Uby_ZNRtdDgD-HBIz0RBMvwHdtYj7</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kim, Kookjin</creator><creator>Lee, Seungjin</creator><creator>Kim, Sungjoong</creator><creator>Kim, Jaekeun</creator><creator>Shin, Dongil</creator><creator>Shin, Dongkyoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8621-715X</orcidid><orcidid>https://orcid.org/0000-0002-2665-3339</orcidid><orcidid>https://orcid.org/0000-0001-9094-4053</orcidid><orcidid>https://orcid.org/0000-0002-7347-5045</orcidid></search><sort><creationdate>2020</creationdate><title>Sensor-Based Deviant Behavior Detection System Using Deep Learning to Help Dementia Caregivers</title><author>Kim, Kookjin ; Lee, Seungjin ; Kim, Sungjoong ; Kim, Jaekeun ; Shin, Dongil ; Shin, Dongkyoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-fdcde2db4791f2a4bd54f5613bca19e9ec673688cbff6e0c7d0f4ff079107c7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>autoencoder</topic><topic>Biological system modeling</topic><topic>Caregivers</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Dementia</topic><topic>Deviance</topic><topic>Deviant detection</topic><topic>Economic impact</topic><topic>Hidden Markov models</topic><topic>long short-term memory models</topic><topic>Low cost</topic><topic>Older people</topic><topic>Outliers (statistics)</topic><topic>Senior citizens</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kookjin</creatorcontrib><creatorcontrib>Lee, Seungjin</creatorcontrib><creatorcontrib>Kim, Sungjoong</creatorcontrib><creatorcontrib>Kim, Jaekeun</creatorcontrib><creatorcontrib>Shin, Dongil</creatorcontrib><creatorcontrib>Shin, Dongkyoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kookjin</au><au>Lee, Seungjin</au><au>Kim, Sungjoong</au><au>Kim, Jaekeun</au><au>Shin, Dongil</au><au>Shin, Dongkyoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensor-Based Deviant Behavior Detection System Using Deep Learning to Help Dementia Caregivers</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>136004</spage><epage>136013</epage><pages>136004-136013</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The number of elderly people suffering from dementia, a senile disease, is increasing day by day due to the rapid aging of the population. As a result, social and economic costs are also gradually increasing. To prevent such monetary losses, a system that can operate at a low cost is needed to care for dementia patients. Therefore, this research proposes a sensor-based deviant behavior detection system that allows caregivers to easily manage dementia patients even if they are not in the same location as their dementia patients at a low cost. In this research, the autoencoder and the LSTM models were used together, because deviance behavior is difficult to obtain labeled data. The autoencoder model is a representative unsupervised learning model, which can be used to extract characteristics of data, and was used to learn characteristics of normal behavioral data. The LSTM model is used to determine the deviant behavior from output outlier data that exceeds the threshold in the autoencoder. As a result of the experiment, each model achieved more than 96% and more than 99% accuracy. This research is expected to help caregivers of dementia patients manage the elderly with dementia more inexpensively and efficiently.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3011654</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8621-715X</orcidid><orcidid>https://orcid.org/0000-0002-2665-3339</orcidid><orcidid>https://orcid.org/0000-0001-9094-4053</orcidid><orcidid>https://orcid.org/0000-0002-7347-5045</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.136004-136013
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9146821
source IEEE Open Access Journals
subjects autoencoder
Biological system modeling
Caregivers
Data models
Deep learning
Dementia
Deviance
Deviant detection
Economic impact
Hidden Markov models
long short-term memory models
Low cost
Older people
Outliers (statistics)
Senior citizens
Statistics
title Sensor-Based Deviant Behavior Detection System Using Deep Learning to Help Dementia Caregivers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensor-Based%20Deviant%20Behavior%20Detection%20System%20Using%20Deep%20Learning%20to%20Help%20Dementia%20Caregivers&rft.jtitle=IEEE%20access&rft.au=Kim,%20Kookjin&rft.date=2020&rft.volume=8&rft.spage=136004&rft.epage=136013&rft.pages=136004-136013&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3011654&rft_dat=%3Cproquest_ieee_%3E2454641259%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-fdcde2db4791f2a4bd54f5613bca19e9ec673688cbff6e0c7d0f4ff079107c7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454641259&rft_id=info:pmid/&rft_ieee_id=9146821&rfr_iscdi=true