Loading…
Sensor-Based Deviant Behavior Detection System Using Deep Learning to Help Dementia Caregivers
The number of elderly people suffering from dementia, a senile disease, is increasing day by day due to the rapid aging of the population. As a result, social and economic costs are also gradually increasing. To prevent such monetary losses, a system that can operate at a low cost is needed to care...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.136004-136013 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-fdcde2db4791f2a4bd54f5613bca19e9ec673688cbff6e0c7d0f4ff079107c7a3 |
container_end_page | 136013 |
container_issue | |
container_start_page | 136004 |
container_title | IEEE access |
container_volume | 8 |
creator | Kim, Kookjin Lee, Seungjin Kim, Sungjoong Kim, Jaekeun Shin, Dongil Shin, Dongkyoo |
description | The number of elderly people suffering from dementia, a senile disease, is increasing day by day due to the rapid aging of the population. As a result, social and economic costs are also gradually increasing. To prevent such monetary losses, a system that can operate at a low cost is needed to care for dementia patients. Therefore, this research proposes a sensor-based deviant behavior detection system that allows caregivers to easily manage dementia patients even if they are not in the same location as their dementia patients at a low cost. In this research, the autoencoder and the LSTM models were used together, because deviance behavior is difficult to obtain labeled data. The autoencoder model is a representative unsupervised learning model, which can be used to extract characteristics of data, and was used to learn characteristics of normal behavioral data. The LSTM model is used to determine the deviant behavior from output outlier data that exceeds the threshold in the autoencoder. As a result of the experiment, each model achieved more than 96% and more than 99% accuracy. This research is expected to help caregivers of dementia patients manage the elderly with dementia more inexpensively and efficiently. |
doi_str_mv | 10.1109/ACCESS.2020.3011654 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9146821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9146821</ieee_id><doaj_id>oai_doaj_org_article_4646166e58194ae38eb09b29c705f85d</doaj_id><sourcerecordid>2454641259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-fdcde2db4791f2a4bd54f5613bca19e9ec673688cbff6e0c7d0f4ff079107c7a3</originalsourceid><addsrcrecordid>eNpNkUtLAzEUhQdRsGh_QTcDrqfmPZNlHZ9QcFHdGjKZm5rSTmoSC_57U0fEbG7ycc7JhVMUM4zmGCN5vWjbu9VqThBBc4owFpydFBOChawop-L03_28mMa4Qfk0GfF6UrytYIg-VDc6Ql_ewsHpIZU38K4PzocMEpjk_FCuvmKCXfka3bDOGPblEnQYjq_ky0fY7jPdwZCcLlsdYO0OEOJlcWb1NsL0d14Ur_d3L-1jtXx-eGoXy8pQ3qTK9qYH0nesltgSzbqeM8sFpp3RWIIEI2oqmsZ01gpApu6RZdaiLEe1qTW9KJ7G3N7rjdoHt9PhS3nt1A_wYa10SM5sQTHBBBYCeIMl00Ab6JDsiDQ14rbhfc66GrP2wX98Qkxq4z_DkNdXhPFsx4TLrKKjygQfYwD79ytG6tiLGntRx17Uby_ZNRtdDgD-HBIz0RBMvwHdtYj7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454641259</pqid></control><display><type>article</type><title>Sensor-Based Deviant Behavior Detection System Using Deep Learning to Help Dementia Caregivers</title><source>IEEE Open Access Journals</source><creator>Kim, Kookjin ; Lee, Seungjin ; Kim, Sungjoong ; Kim, Jaekeun ; Shin, Dongil ; Shin, Dongkyoo</creator><creatorcontrib>Kim, Kookjin ; Lee, Seungjin ; Kim, Sungjoong ; Kim, Jaekeun ; Shin, Dongil ; Shin, Dongkyoo</creatorcontrib><description>The number of elderly people suffering from dementia, a senile disease, is increasing day by day due to the rapid aging of the population. As a result, social and economic costs are also gradually increasing. To prevent such monetary losses, a system that can operate at a low cost is needed to care for dementia patients. Therefore, this research proposes a sensor-based deviant behavior detection system that allows caregivers to easily manage dementia patients even if they are not in the same location as their dementia patients at a low cost. In this research, the autoencoder and the LSTM models were used together, because deviance behavior is difficult to obtain labeled data. The autoencoder model is a representative unsupervised learning model, which can be used to extract characteristics of data, and was used to learn characteristics of normal behavioral data. The LSTM model is used to determine the deviant behavior from output outlier data that exceeds the threshold in the autoencoder. As a result of the experiment, each model achieved more than 96% and more than 99% accuracy. This research is expected to help caregivers of dementia patients manage the elderly with dementia more inexpensively and efficiently.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3011654</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>autoencoder ; Biological system modeling ; Caregivers ; Data models ; Deep learning ; Dementia ; Deviance ; Deviant detection ; Economic impact ; Hidden Markov models ; long short-term memory models ; Low cost ; Older people ; Outliers (statistics) ; Senior citizens ; Statistics</subject><ispartof>IEEE access, 2020, Vol.8, p.136004-136013</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-fdcde2db4791f2a4bd54f5613bca19e9ec673688cbff6e0c7d0f4ff079107c7a3</cites><orcidid>0000-0002-8621-715X ; 0000-0002-2665-3339 ; 0000-0001-9094-4053 ; 0000-0002-7347-5045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9146821$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Kim, Kookjin</creatorcontrib><creatorcontrib>Lee, Seungjin</creatorcontrib><creatorcontrib>Kim, Sungjoong</creatorcontrib><creatorcontrib>Kim, Jaekeun</creatorcontrib><creatorcontrib>Shin, Dongil</creatorcontrib><creatorcontrib>Shin, Dongkyoo</creatorcontrib><title>Sensor-Based Deviant Behavior Detection System Using Deep Learning to Help Dementia Caregivers</title><title>IEEE access</title><addtitle>Access</addtitle><description>The number of elderly people suffering from dementia, a senile disease, is increasing day by day due to the rapid aging of the population. As a result, social and economic costs are also gradually increasing. To prevent such monetary losses, a system that can operate at a low cost is needed to care for dementia patients. Therefore, this research proposes a sensor-based deviant behavior detection system that allows caregivers to easily manage dementia patients even if they are not in the same location as their dementia patients at a low cost. In this research, the autoencoder and the LSTM models were used together, because deviance behavior is difficult to obtain labeled data. The autoencoder model is a representative unsupervised learning model, which can be used to extract characteristics of data, and was used to learn characteristics of normal behavioral data. The LSTM model is used to determine the deviant behavior from output outlier data that exceeds the threshold in the autoencoder. As a result of the experiment, each model achieved more than 96% and more than 99% accuracy. This research is expected to help caregivers of dementia patients manage the elderly with dementia more inexpensively and efficiently.</description><subject>autoencoder</subject><subject>Biological system modeling</subject><subject>Caregivers</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Dementia</subject><subject>Deviance</subject><subject>Deviant detection</subject><subject>Economic impact</subject><subject>Hidden Markov models</subject><subject>long short-term memory models</subject><subject>Low cost</subject><subject>Older people</subject><subject>Outliers (statistics)</subject><subject>Senior citizens</subject><subject>Statistics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEUhQdRsGh_QTcDrqfmPZNlHZ9QcFHdGjKZm5rSTmoSC_57U0fEbG7ycc7JhVMUM4zmGCN5vWjbu9VqThBBc4owFpydFBOChawop-L03_28mMa4Qfk0GfF6UrytYIg-VDc6Ql_ewsHpIZU38K4PzocMEpjk_FCuvmKCXfka3bDOGPblEnQYjq_ky0fY7jPdwZCcLlsdYO0OEOJlcWb1NsL0d14Ur_d3L-1jtXx-eGoXy8pQ3qTK9qYH0nesltgSzbqeM8sFpp3RWIIEI2oqmsZ01gpApu6RZdaiLEe1qTW9KJ7G3N7rjdoHt9PhS3nt1A_wYa10SM5sQTHBBBYCeIMl00Ab6JDsiDQ14rbhfc66GrP2wX98Qkxq4z_DkNdXhPFsx4TLrKKjygQfYwD79ytG6tiLGntRx17Uby_ZNRtdDgD-HBIz0RBMvwHdtYj7</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kim, Kookjin</creator><creator>Lee, Seungjin</creator><creator>Kim, Sungjoong</creator><creator>Kim, Jaekeun</creator><creator>Shin, Dongil</creator><creator>Shin, Dongkyoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8621-715X</orcidid><orcidid>https://orcid.org/0000-0002-2665-3339</orcidid><orcidid>https://orcid.org/0000-0001-9094-4053</orcidid><orcidid>https://orcid.org/0000-0002-7347-5045</orcidid></search><sort><creationdate>2020</creationdate><title>Sensor-Based Deviant Behavior Detection System Using Deep Learning to Help Dementia Caregivers</title><author>Kim, Kookjin ; Lee, Seungjin ; Kim, Sungjoong ; Kim, Jaekeun ; Shin, Dongil ; Shin, Dongkyoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-fdcde2db4791f2a4bd54f5613bca19e9ec673688cbff6e0c7d0f4ff079107c7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>autoencoder</topic><topic>Biological system modeling</topic><topic>Caregivers</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Dementia</topic><topic>Deviance</topic><topic>Deviant detection</topic><topic>Economic impact</topic><topic>Hidden Markov models</topic><topic>long short-term memory models</topic><topic>Low cost</topic><topic>Older people</topic><topic>Outliers (statistics)</topic><topic>Senior citizens</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kookjin</creatorcontrib><creatorcontrib>Lee, Seungjin</creatorcontrib><creatorcontrib>Kim, Sungjoong</creatorcontrib><creatorcontrib>Kim, Jaekeun</creatorcontrib><creatorcontrib>Shin, Dongil</creatorcontrib><creatorcontrib>Shin, Dongkyoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kookjin</au><au>Lee, Seungjin</au><au>Kim, Sungjoong</au><au>Kim, Jaekeun</au><au>Shin, Dongil</au><au>Shin, Dongkyoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensor-Based Deviant Behavior Detection System Using Deep Learning to Help Dementia Caregivers</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>136004</spage><epage>136013</epage><pages>136004-136013</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The number of elderly people suffering from dementia, a senile disease, is increasing day by day due to the rapid aging of the population. As a result, social and economic costs are also gradually increasing. To prevent such monetary losses, a system that can operate at a low cost is needed to care for dementia patients. Therefore, this research proposes a sensor-based deviant behavior detection system that allows caregivers to easily manage dementia patients even if they are not in the same location as their dementia patients at a low cost. In this research, the autoencoder and the LSTM models were used together, because deviance behavior is difficult to obtain labeled data. The autoencoder model is a representative unsupervised learning model, which can be used to extract characteristics of data, and was used to learn characteristics of normal behavioral data. The LSTM model is used to determine the deviant behavior from output outlier data that exceeds the threshold in the autoencoder. As a result of the experiment, each model achieved more than 96% and more than 99% accuracy. This research is expected to help caregivers of dementia patients manage the elderly with dementia more inexpensively and efficiently.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3011654</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8621-715X</orcidid><orcidid>https://orcid.org/0000-0002-2665-3339</orcidid><orcidid>https://orcid.org/0000-0001-9094-4053</orcidid><orcidid>https://orcid.org/0000-0002-7347-5045</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.136004-136013 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9146821 |
source | IEEE Open Access Journals |
subjects | autoencoder Biological system modeling Caregivers Data models Deep learning Dementia Deviance Deviant detection Economic impact Hidden Markov models long short-term memory models Low cost Older people Outliers (statistics) Senior citizens Statistics |
title | Sensor-Based Deviant Behavior Detection System Using Deep Learning to Help Dementia Caregivers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensor-Based%20Deviant%20Behavior%20Detection%20System%20Using%20Deep%20Learning%20to%20Help%20Dementia%20Caregivers&rft.jtitle=IEEE%20access&rft.au=Kim,%20Kookjin&rft.date=2020&rft.volume=8&rft.spage=136004&rft.epage=136013&rft.pages=136004-136013&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3011654&rft_dat=%3Cproquest_ieee_%3E2454641259%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-fdcde2db4791f2a4bd54f5613bca19e9ec673688cbff6e0c7d0f4ff079107c7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454641259&rft_id=info:pmid/&rft_ieee_id=9146821&rfr_iscdi=true |