Loading…

Learning from Having Learned: An Environment-adaptive Parking Space Detection Method

Although parking space detection is a classic application in the field of image processing, most of commonly used methods can only guarantee their accuracy of detecting standard parking spaces due to the limitation of environmental diversity. Inspired by the close connection between vehicles and par...

Full description

Saved in:
Bibliographic Details
Main Authors: Yi, Yang, Sitan, Jiang, Lu, Zhang, Jianhang, Wang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4027
container_issue
container_start_page 4022
container_title
container_volume
creator Yi, Yang
Sitan, Jiang
Lu, Zhang
Jianhang, Wang
description Although parking space detection is a classic application in the field of image processing, most of commonly used methods can only guarantee their accuracy of detecting standard parking spaces due to the limitation of environmental diversity. Inspired by the close connection between vehicles and parking spaces in the parking environment, we believe that well-trained vehicle detection method can help improve the environmental adaptability of the parking space detection method. In this paper, we propose an environment-adaptive available parking space detection method. Based on the detection results obtained by vehicle detection and orientation estimation, our method enables the vision-only autonomous vehicle to learn environmental information near parked cars, and to detect available parking spaces accordingly. Results from real-world experiments have shown the functionality of the presented approach.
doi_str_mv 10.23919/ACC45564.2020.9147934
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9147934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9147934</ieee_id><sourcerecordid>9147934</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-442e84b79e1a0919248f6f5e6c5ae98e6b27f9004ab1abc881c624290649af2c3</originalsourceid><addsrcrecordid>eNotkN1Kw0AUhFdBsK0-gSD7Aon7n13vQmytEFGwXpeTzYmumk1IQsC312qvZhg-BmYIueYsFdJxd5MXhdLaqFQwwVLHVeakOiFLrqU1VhijTslCyMwm2hp-Tpbj-MEYd86wBdmVCEMM8Y02Q9fSLcwH_xdifUvzSNdxDkMXW4xTAjX0U5iRPsPweQBfevBI73BCP4Uu0kec3rv6gpw18DXi5VFX5HWz3hXbpHy6fyjyMgmCySlRSqBVVeaQA_tdIpRtTKPReA3oLJpKZI1jTEHFofLWcm-EEo4Z5aARXq7I1X9vQMR9P4QWhu_98QH5A8_uUFY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning from Having Learned: An Environment-adaptive Parking Space Detection Method</title><source>IEEE Xplore All Conference Series</source><creator>Yi, Yang ; Sitan, Jiang ; Lu, Zhang ; Jianhang, Wang</creator><creatorcontrib>Yi, Yang ; Sitan, Jiang ; Lu, Zhang ; Jianhang, Wang</creatorcontrib><description>Although parking space detection is a classic application in the field of image processing, most of commonly used methods can only guarantee their accuracy of detecting standard parking spaces due to the limitation of environmental diversity. Inspired by the close connection between vehicles and parking spaces in the parking environment, we believe that well-trained vehicle detection method can help improve the environmental adaptability of the parking space detection method. In this paper, we propose an environment-adaptive available parking space detection method. Based on the detection results obtained by vehicle detection and orientation estimation, our method enables the vision-only autonomous vehicle to learn environmental information near parked cars, and to detect available parking spaces accordingly. Results from real-world experiments have shown the functionality of the presented approach.</description><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1538682664</identifier><identifier>EISBN: 9781538682661</identifier><identifier>DOI: 10.23919/ACC45564.2020.9147934</identifier><language>eng</language><publisher>AACC</publisher><subject>Automobiles ; Cameras ; Estimation ; Image restoration ; Simultaneous localization and mapping ; Space vehicles</subject><ispartof>2020 American Control Conference (ACC), 2020, p.4022-4027</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9147934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23911,23912,25120,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9147934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yi, Yang</creatorcontrib><creatorcontrib>Sitan, Jiang</creatorcontrib><creatorcontrib>Lu, Zhang</creatorcontrib><creatorcontrib>Jianhang, Wang</creatorcontrib><title>Learning from Having Learned: An Environment-adaptive Parking Space Detection Method</title><title>2020 American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>Although parking space detection is a classic application in the field of image processing, most of commonly used methods can only guarantee their accuracy of detecting standard parking spaces due to the limitation of environmental diversity. Inspired by the close connection between vehicles and parking spaces in the parking environment, we believe that well-trained vehicle detection method can help improve the environmental adaptability of the parking space detection method. In this paper, we propose an environment-adaptive available parking space detection method. Based on the detection results obtained by vehicle detection and orientation estimation, our method enables the vision-only autonomous vehicle to learn environmental information near parked cars, and to detect available parking spaces accordingly. Results from real-world experiments have shown the functionality of the presented approach.</description><subject>Automobiles</subject><subject>Cameras</subject><subject>Estimation</subject><subject>Image restoration</subject><subject>Simultaneous localization and mapping</subject><subject>Space vehicles</subject><issn>2378-5861</issn><isbn>1538682664</isbn><isbn>9781538682661</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1Kw0AUhFdBsK0-gSD7Aon7n13vQmytEFGwXpeTzYmumk1IQsC312qvZhg-BmYIueYsFdJxd5MXhdLaqFQwwVLHVeakOiFLrqU1VhijTslCyMwm2hp-Tpbj-MEYd86wBdmVCEMM8Y02Q9fSLcwH_xdifUvzSNdxDkMXW4xTAjX0U5iRPsPweQBfevBI73BCP4Uu0kec3rv6gpw18DXi5VFX5HWz3hXbpHy6fyjyMgmCySlRSqBVVeaQA_tdIpRtTKPReA3oLJpKZI1jTEHFofLWcm-EEo4Z5aARXq7I1X9vQMR9P4QWhu_98QH5A8_uUFY</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Yi, Yang</creator><creator>Sitan, Jiang</creator><creator>Lu, Zhang</creator><creator>Jianhang, Wang</creator><general>AACC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202007</creationdate><title>Learning from Having Learned: An Environment-adaptive Parking Space Detection Method</title><author>Yi, Yang ; Sitan, Jiang ; Lu, Zhang ; Jianhang, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-442e84b79e1a0919248f6f5e6c5ae98e6b27f9004ab1abc881c624290649af2c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automobiles</topic><topic>Cameras</topic><topic>Estimation</topic><topic>Image restoration</topic><topic>Simultaneous localization and mapping</topic><topic>Space vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Yi, Yang</creatorcontrib><creatorcontrib>Sitan, Jiang</creatorcontrib><creatorcontrib>Lu, Zhang</creatorcontrib><creatorcontrib>Jianhang, Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yi, Yang</au><au>Sitan, Jiang</au><au>Lu, Zhang</au><au>Jianhang, Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning from Having Learned: An Environment-adaptive Parking Space Detection Method</atitle><btitle>2020 American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2020-07</date><risdate>2020</risdate><spage>4022</spage><epage>4027</epage><pages>4022-4027</pages><eissn>2378-5861</eissn><eisbn>1538682664</eisbn><eisbn>9781538682661</eisbn><abstract>Although parking space detection is a classic application in the field of image processing, most of commonly used methods can only guarantee their accuracy of detecting standard parking spaces due to the limitation of environmental diversity. Inspired by the close connection between vehicles and parking spaces in the parking environment, we believe that well-trained vehicle detection method can help improve the environmental adaptability of the parking space detection method. In this paper, we propose an environment-adaptive available parking space detection method. Based on the detection results obtained by vehicle detection and orientation estimation, our method enables the vision-only autonomous vehicle to learn environmental information near parked cars, and to detect available parking spaces accordingly. Results from real-world experiments have shown the functionality of the presented approach.</abstract><pub>AACC</pub><doi>10.23919/ACC45564.2020.9147934</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2378-5861
ispartof 2020 American Control Conference (ACC), 2020, p.4022-4027
issn 2378-5861
language eng
recordid cdi_ieee_primary_9147934
source IEEE Xplore All Conference Series
subjects Automobiles
Cameras
Estimation
Image restoration
Simultaneous localization and mapping
Space vehicles
title Learning from Having Learned: An Environment-adaptive Parking Space Detection Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20from%20Having%20Learned:%20An%20Environment-adaptive%20Parking%20Space%20Detection%20Method&rft.btitle=2020%20American%20Control%20Conference%20(ACC)&rft.au=Yi,%20Yang&rft.date=2020-07&rft.spage=4022&rft.epage=4027&rft.pages=4022-4027&rft.eissn=2378-5861&rft_id=info:doi/10.23919/ACC45564.2020.9147934&rft.eisbn=1538682664&rft.eisbn_list=9781538682661&rft_dat=%3Cieee_CHZPO%3E9147934%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-442e84b79e1a0919248f6f5e6c5ae98e6b27f9004ab1abc881c624290649af2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9147934&rfr_iscdi=true